The image of the point \( \left( \frac{5}{3}, \frac{5}{3}, \frac{8}{3} \right) \) in the plane \( x - 2y + z - 2 = 0 \) is given as P. We are tasked to find \( \alpha \) given that the distance from point Q(6, -2, a) to point P is 13.
1. Finding the Image Point P:
Given Point: \( A = \left( \frac{5}{3}, \frac{5}{3}, \frac{8}{3} \right) \)
Plane Equation: \( x - 2y + z - 2 = 0 \)
Let the image point P be \( (x, y, z) \).
1. Midpoint: The midpoint of AP lies on the plane.
Midpoint \( M = \left( \frac{x + \frac{5}{3}}{2}, \frac{y + \frac{5}{3}}{2}, \frac{z + \frac{8}{3}}{2} \right) \)
Substitute M into the plane equation:
\( \frac{x + \frac{5}{3}}{2} - 2\left( \frac{y + \frac{5}{3}}{2} \right) + \frac{z + \frac{8}{3}}{2} - 2 = 0 \)
\( x + \frac{5}{3} - 2y - \frac{10}{3} + z + \frac{8}{3} - 4 = 0 \)
\( x - 2y + z - \frac{9}{3} - 4 = 0 \)
\( x - 2y + z - 7 = 0 \)
2. Line AP is Perpendicular to the Plane:
The direction vector of AP is \( \vec{AP} = \left( x - \frac{5}{3}, y - \frac{5}{3}, z - \frac{8}{3} \right) \)
The normal vector of the plane is \( \vec{n} = (1, -2, 1) \)
Since AP is perpendicular to the plane, \( \vec{AP} \) is parallel to \( \vec{n} \). Therefore, \( \vec{AP} = \lambda \vec{n} \) for some scalar \( \lambda \).
\( x - \frac{5}{3} = \lambda, \quad y - \frac{5}{3} = -2\lambda, \quad z - \frac{8}{3} = \lambda \)
\( x = \lambda + \frac{5}{3}, \quad y = -2\lambda + \frac{5}{3}, \quad z = \lambda + \frac{8}{3} \)
3. Solve for x, y, z:
Substitute these into the midpoint equation:
\( (\lambda + \frac{5}{3}) - 2(-2\lambda + \frac{5}{3}) + (\lambda + \frac{8}{3}) - 7 = 0 \)
\( \lambda + \frac{5}{3} + 4\lambda - \frac{10}{3} + \lambda + \frac{8}{3} - 7 = 0 \)
\( 6\lambda + \frac{3}{3} - 7 = 0 \)
\( 6\lambda + 1 - 7 = 0 \)
\( 6\lambda = 6 \)
\( \lambda = 1 \)
Then:
\( x = 1 + \frac{5}{3} = \frac{8}{3}, \quad y = -2 + \frac{5}{3} = -\frac{1}{3}, \quad z = 1 + \frac{8}{3} = \frac{11}{3} \)
So, \( P = \left( \frac{8}{3}, -\frac{1}{3}, \frac{11}{3} \right) \)
2. Calculating alpha:
P = (8/3, -1/3, 11/3)
Q = (6, -2, a)
Distance PQ = 13
\(13^2 = (6-8/3)^2 + (-2+1/3)^2 + (a-11/3)^2\)
\(169 = (10/3)^2 + (-5/3)^2 + (a-11/3)^2\)
\(169 = 100/9 + 25/9 + (a-11/3)^2\)
\(169 = 125/9 + (a-11/3)^2\)
\((a-11/3)^2 = 169 - 125/9 = 1521/9 - 125/9 = 1396/9\)
\(a-11/3 = \pm \sqrt{1396}/3\)
\(a = (11 \pm \sqrt{1396})/3\)
Correct final answer: \(a = (11 \pm \sqrt{1396})/3\)

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
