\(L:\) \(\frac{x+2}{4}=\frac{y−1}{2}=\frac{z+1}{3}\)
Let
\(P=(4t−2,2t+1,3t−1)\)
\(∵ P\) is the foot of perpendicular of \((1, 2, 4)\)
\(∴ 4(4t – 3) + 2(2t – 1) + 3(3t – 5) = 0\)
\(⇒29t=29⇒t=1\)
\(∴ P = (2, 3, 2)\)
Now, distance of \(P\) from the plane
\(3x + 4y + 12z + 23 = 0\), is
\(\begin{vmatrix}\frac{6+12+24+23}{\sqrt{9+16+144}}\end{vmatrix}=\frac{65}{13}=5\)
If the line segment joining the points \( (1,0) \) and \( (0,1) \) subtends an angle of \( 45^\circ \) at a variable point \( P \), then the equation of the locus of \( P \) is:
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The length of the perpendicular drawn from the point to the line is the distance of a point from a line. The shortest difference between a point and a line is the distance between them. To move a point on the line it measures the minimum distance or length required.
The following steps can be used to calculate the distance between two points using the given coordinates:
Note: If the two points are in a 3D plane, we can use the 3D distance formula, d = √(m2 - m1)2 + (n2 - n1)2 + (o2 - o1)2.
Read More: Distance Formula