\(L:\) \(\frac{x+2}{4}=\frac{y−1}{2}=\frac{z+1}{3}\)
Let
\(P=(4t−2,2t+1,3t−1)\)
\(∵ P\) is the foot of perpendicular of \((1, 2, 4)\)
\(∴ 4(4t – 3) + 2(2t – 1) + 3(3t – 5) = 0\)
\(⇒29t=29⇒t=1\)
\(∴ P = (2, 3, 2)\)
Now, distance of \(P\) from the plane
\(3x + 4y + 12z + 23 = 0\), is
\(\begin{vmatrix}\frac{6+12+24+23}{\sqrt{9+16+144}}\end{vmatrix}=\frac{65}{13}=5\)
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
The dimensions of a physical quantity \( \epsilon_0 \frac{d\Phi_E}{dt} \) are similar to [Symbols have their usual meanings]

The length of the perpendicular drawn from the point to the line is the distance of a point from a line. The shortest difference between a point and a line is the distance between them. To move a point on the line it measures the minimum distance or length required.
The following steps can be used to calculate the distance between two points using the given coordinates:
Note: If the two points are in a 3D plane, we can use the 3D distance formula, d = √(m2 - m1)2 + (n2 - n1)2 + (o2 - o1)2.
Read More: Distance Formula