\(L:\) \(\frac{x+2}{4}=\frac{y−1}{2}=\frac{z+1}{3}\)
Let
\(P=(4t−2,2t+1,3t−1)\)
\(∵ P\) is the foot of perpendicular of \((1, 2, 4)\)
\(∴ 4(4t – 3) + 2(2t – 1) + 3(3t – 5) = 0\)
\(⇒29t=29⇒t=1\)
\(∴ P = (2, 3, 2)\)
Now, distance of \(P\) from the plane
\(3x + 4y + 12z + 23 = 0\), is
\(\begin{vmatrix}\frac{6+12+24+23}{\sqrt{9+16+144}}\end{vmatrix}=\frac{65}{13}=5\)
If \( (a, b) \) be the orthocenter of the triangle whose vertices are \( (1, 2) \), \( (2, 3) \), and \( (3, 1) \), and \( I_1 = \int_a^b x \sin(4x - x^2) dx \), \( I_2 = \int_a^b \sin(4x - x^2) dx \), then \( 36 \frac{I_1}{I_2} \) is equal to:
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is:
The length of the perpendicular drawn from the point to the line is the distance of a point from a line. The shortest difference between a point and a line is the distance between them. To move a point on the line it measures the minimum distance or length required.
The following steps can be used to calculate the distance between two points using the given coordinates:
Note: If the two points are in a 3D plane, we can use the 3D distance formula, d = √(m2 - m1)2 + (n2 - n1)2 + (o2 - o1)2.
Read More: Distance Formula