Step 1: Understanding the Concept:
We need to find two specific points \(N\) and \(Q\) on the given line \(L\).
\(N\) is found using the perpendicularity condition from \(P\).
\(Q\) is found using the condition that the vector \(\vec{PQ}\) is perpendicular to the normal of a given plane.
The angle is then found using the dot product of vectors \(\vec{PN}\) and \(\vec{PQ}\).
Step 2: Key Formula or Approach:
1. General point on line: \((r, 0, -r)\).
2. Perpendicularity: \(\vec{A} \cdot \vec{B} = 0\).
3. \(\cos \alpha = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{u}| |\vec{v}|}\).
Step 3: Detailed Explanation:
Let \(N\) be \((r, 0, -r)\) on line \(L\).
Vector \(\vec{PN} = (r - 1, -2, -r + 1)\).
Direction of line \(L\) is \((1, 0, -1)\).
Since \(\vec{PN} \perp L\): \((r - 1)(1) + (-2)(0) + (-r + 1)(-1) = 0\).
\(r - 1 + r - 1 = 0 \Rightarrow 2r = 2 \Rightarrow r = 1\).
So, \(N = (1, 0, -1)\) and \(\vec{PN} = (0, -2, 0)\). Magnitude \(|\vec{PN}| = 2\).
Let \(Q\) be \((\lambda, 0, -\lambda)\) on line \(L\).
Vector \(\vec{PQ} = (\lambda - 1, -2, -\lambda + 1)\).
The line \(PQ\) is parallel to the plane \(x + y + 2z = 0\), so \(\vec{PQ}\) is perpendicular to the normal \(\vec{n} = (1, 1, 2)\).
\((\lambda - 1)(1) + (-2)(1) + (-\lambda + 1)(2) = 0\).
\(\lambda - 1 - 2 - 2\lambda + 2 = 0 \Rightarrow -\lambda - 1 = 0 \Rightarrow \lambda = -1\).
So, \(Q = (-1, 0, 1)\) and \(\vec{PQ} = (-2, -2, 2)\). Magnitude \(|\vec{PQ}| = \sqrt{4+4+4} = \sqrt{12} = 2\sqrt{3}\).
\(\cos \alpha = \frac{|\vec{PN} \cdot \vec{PQ}|}{|\vec{PN}| |\vec{PQ}|} = \frac{|(0)(-2) + (-2)(-2) + (0)(2)|}{2 \cdot 2\sqrt{3}} = \frac{4}{4\sqrt{3}} = \frac{1}{\sqrt{3}}\).
Step 4: Final Answer:
\(\cos \alpha = \frac{1}{\sqrt{3}}\).