Step 1: Define the geometry of the circle. The circle touches the x-axis, thus the radius \( r = |a| \).
Step 2: Determine the intercept on the y-axis. The length of the intercept is \( b \), which means \( b = 2r \). Since it touches the x-axis at \( a \), \( b = 2|a| \).
Step 3: Calculate the coordinates of the center. Center \( (h, k) \) is \( (a, -a) \) because it lies below the x-axis.
Step 4: Substitute into the circle equation. \[ (x - a)^2 + (y + a)^2 = a^2 \] Expanding and simplifying gives us the general form of the circle. Step 5: Extract the coefficients and solve for the ordered pair. \[ 2a = \alpha, \quad b^2 = 4a^2 = \beta^2 + 4\gamma \]
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
