First, analyze the function \( f(x) = \log_4 \log_3 \log_7 (8 - \log_2(x^2 + 4x + 5)) \).
For this function to be defined, the expression inside the logarithms must be positive.
Solving the inequalities gives the domain of \( f(x) \) as \( (\alpha, \beta) \).
Similarly, for the function \( g(x) = \sin(x^2) \), the domain is \( [\gamma, \delta] \).
After finding the domains, we compute \( \alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 15 \).
Thus, the correct answer is \( 15 \).
Step 1: First inequality:
\[ \log_3 \left( \log_7 \left( 8 - \log_2 \left( x^2 + 4x + 5 \right) \right) \right) > 0. \] This implies: \[ \log_7 \left( 8 - \log_2 \left( x^2 + 4x + 5 \right) \right) > 1. \] Simplifying further: \[ 8 - \log_2 \left( x^2 + 4x + 5 \right) > 7. \] Thus: \[ \log_2 \left( x^2 + 4x + 5 \right) < 1. \]
Step 2: Second inequality:
\[ \log_2 \left( x^2 + 4x + 5 \right) < 1 \quad \Rightarrow \quad x^2 + 4x + 5 < 2. \] This simplifies to: \[ x^2 + 4x + 3 < 0. \] The solution is: \[ x \in (-3, -1). \]
Step 3: Third inequality:
\[ -1 \leq \frac{7x + 10}{x - 2} \leq 1. \] The solution to this inequality is: \[ x \in [-2, -1]. \]
Step 4: Values of \( \alpha, \beta, \gamma, \delta \):
\[ \alpha = -3, \, \beta = -1, \, \gamma = -2, \, \delta = -1. \] Now, calculate: \[ \alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 15. \]
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :