The given function is: \( f(x) = \cos^{-1} \left( \frac{4x + 5}{3x - 7} \right) \)
We are given the following inequalities:
\( -1 \leq \frac{4x + 5}{3x - 7} \leq 1 \)
First, solve the inequalities:
\( \frac{7x - 2}{3x - 7} \geq 0 \), and \( \frac{x + 12}{3x - 7} \leq 0 \)
Solving for \( x \), we get:
\( x \in \left( -\infty, \frac{2}{7} \right) \cup \left( \frac{7}{3}, \infty \right) \), and \( x \in \left[ -\frac{12}{7}, \frac{7}{3} \right] \)
Thus, we have \( x \in \left[ -12, \frac{2}{7} \right] \). Let \( \alpha = -12 \) and \( \beta = \frac{2}{7} \)
The next function is: \( g(x) = \log_2 \left( 2 - 6 \log_2(2x + 5) \right) \)
To solve for \( g(x) \), we simplify:
\( 2 - 6 \log_2(2x + 5) \geq 0 \), which gives \( 2x + 5 \geq 0 \), so \( x \geq -\frac{5}{2} \)
Next, solving for \( \log_2(2x + 5) \), we get:
\( \log_2(2x + 5) \leq \frac{1}{3} \), which implies \( (2x + 5)^3 \leq 27 \)
Thus, \( 2x + 5 \leq 3 \) gives \( x \leq -\frac{5}{2} - 1 \), so \( \gamma = -\frac{5}{2} \) and \( \delta = -1 \)
The final expression is:
\( |7(\alpha + \beta) + 4(\gamma + \delta)| = 96 \)
1.Domain of \(f(x) = \cos^{-1}\left(\frac{4x+5}{3x-7}\right)\) For the arccosine function to be defined, we require \(-1 \leq \frac{4x+5}{3x-7} \leq 1\). \(\frac{4x+5}{3x-7} \leq 1\):
\[ \frac{4x+5}{3x-7} - 1 \leq 0 \] \[ \frac{4x+5 - (3x-7)}{3x-7} \leq 0 \] \[ \frac{x+12}{3x-7} \leq 0 \] The critical points are \(x = -12\) and \(x = \frac{7}{3}\).
Testing intervals:
\(x<-12\): Both \((x+12)\) and \((3x-7)\) are negative, so the fraction is positive.
\(-12<x<\frac{7}{3}\): \((x+12)\) is positive, \((3x-7)\) is negative, so the fraction is negative.
\(x>\frac{7}{3}\): Both \((x+12)\) and \((3x-7)\) are positive, so the fraction is positive.
Therefore, \(\frac{4x+5}{3x-7} \leq 1\) when \(-12 \leq x<\frac{7}{3}\). \(\frac{4x+5}{3x-7} \geq -1\): \[ \frac{4x+5}{3x-7} + 1 \geq 0 \] \[ \frac{4x+5 +(3x-7)}{3x-7} \geq 0 \] \[ \frac{7x-2}{3x-7} \geq 0 \]
The critical points are \(x = \frac{2}{7}\) and \(x = \frac{7}{3}\).
Testing intervals:
\(x<\frac{2}{7}\): Both \((7x-2)\) and \((3x-7)\) are negative, so the fraction is positive.
\(\frac{2}{7}<x<\frac{7}{3}\): \((7x-2)\) is positive, \((3x-7)\) is negative, so the fraction is negative.
\(x>\frac{7}{3}\): Both \((7x-2)\) and \((3x-7)\) are positive, so the fraction is positive.
Therefore, \(\frac{4x+5}{3x-7} \geq -1\) when \(x \leq \frac{2}{7}\) or \(x>\frac{7}{3}\).
We need both conditions to hold.
The first condition says \(-12 \leq x<\frac{7}{3}\).
The second says \(x \leq \frac{2}{7}\) or \(x>\frac{7}{3}\).
Taking the intersection of the two solutions, we get \(\left[-12, \frac{2}{7}\right]\).
Therefore, \(\alpha = -12\) and \(\beta = \frac{2}{7}\).
2. Domain of \(g(x) = \log_2\left(2 - 6\log_{27}(2x+5)\right)\)
For the logarithm to be defined, we need a positive argument.
We have two logarithm expressions.
\(2x+5>0 \implies x>-\frac{5}{2} = -2.5\) \(2 - 6\log_{27}(2x+5)>0 \implies 2>6\log_{27}(2x+5) \implies \frac{1}{3}>\log_{27}(2x+5)\) \(27^{\frac{1}{3}}>2x+5 \implies 3>2x+5 \implies -2>2x \implies x<-1\)
So, we need \(-2.5<x<-1\).
Thus, \(\gamma = -2.5\) and \(\delta = -1\).
3. Compute the Final Expression \[ 7(\alpha + \beta) + 4(\gamma + \delta) = 7\left(-12 + \frac{2}{7}\right) + 4(-2.5 - 1) \] \[ = 7\left(-\frac{84}{7} + \frac{2}{7}\right) + 4(-3.5) \] \[ = 7\left(-\frac{82}{7}\right) - 14 \] \[ = -82 - 14 \] \[ = -96 \] \[ \left|7(\alpha + \beta) + 4(\gamma + \delta)\right| = |-96| = 96.\]
Let \( f(x) = \log x \) and \[ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} \] Then the domain of \( f \circ g \) is:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
