1.Domain of \(f(x) = \cos^{-1}\left(\frac{4x+5}{3x-7}\right)\) For the arccosine function to be defined, we require \(-1 \leq \frac{4x+5}{3x-7} \leq 1\). \(\frac{4x+5}{3x-7} \leq 1\):
\[ \frac{4x+5}{3x-7} - 1 \leq 0 \] \[ \frac{4x+5 - (3x-7)}{3x-7} \leq 0 \] \[ \frac{x+12}{3x-7} \leq 0 \] The critical points are \(x = -12\) and \(x = \frac{7}{3}\).
Testing intervals:
\(x<-12\): Both \((x+12)\) and \((3x-7)\) are negative, so the fraction is positive.
\(-12<x<\frac{7}{3}\): \((x+12)\) is positive, \((3x-7)\) is negative, so the fraction is negative.
\(x>\frac{7}{3}\): Both \((x+12)\) and \((3x-7)\) are positive, so the fraction is positive.
Therefore, \(\frac{4x+5}{3x-7} \leq 1\) when \(-12 \leq x<\frac{7}{3}\). \(\frac{4x+5}{3x-7} \geq -1\): \[ \frac{4x+5}{3x-7} + 1 \geq 0 \] \[ \frac{4x+5 +(3x-7)}{3x-7} \geq 0 \] \[ \frac{7x-2}{3x-7} \geq 0 \]
The critical points are \(x = \frac{2}{7}\) and \(x = \frac{7}{3}\).
Testing intervals:
\(x<\frac{2}{7}\): Both \((7x-2)\) and \((3x-7)\) are negative, so the fraction is positive.
\(\frac{2}{7}<x<\frac{7}{3}\): \((7x-2)\) is positive, \((3x-7)\) is negative, so the fraction is negative.
\(x>\frac{7}{3}\): Both \((7x-2)\) and \((3x-7)\) are positive, so the fraction is positive.
Therefore, \(\frac{4x+5}{3x-7} \geq -1\) when \(x \leq \frac{2}{7}\) or \(x>\frac{7}{3}\).
We need both conditions to hold.
The first condition says \(-12 \leq x<\frac{7}{3}\).
The second says \(x \leq \frac{2}{7}\) or \(x>\frac{7}{3}\).
Taking the intersection of the two solutions, we get \(\left[-12, \frac{2}{7}\right]\).
Therefore, \(\alpha = -12\) and \(\beta = \frac{2}{7}\).
2. Domain of \(g(x) = \log_2\left(2 - 6\log_{27}(2x+5)\right)\)
For the logarithm to be defined, we need a positive argument.
We have two logarithm expressions.
\(2x+5>0 \implies x>-\frac{5}{2} = -2.5\) \(2 - 6\log_{27}(2x+5)>0 \implies 2>6\log_{27}(2x+5) \implies \frac{1}{3}>\log_{27}(2x+5)\) \(27^{\frac{1}{3}}>2x+5 \implies 3>2x+5 \implies -2>2x \implies x<-1\)
So, we need \(-2.5<x<-1\).
Thus, \(\gamma = -2.5\) and \(\delta = -1\).
3. Compute the Final Expression \[ 7(\alpha + \beta) + 4(\gamma + \delta) = 7\left(-12 + \frac{2}{7}\right) + 4(-2.5 - 1) \] \[ = 7\left(-\frac{84}{7} + \frac{2}{7}\right) + 4(-3.5) \] \[ = 7\left(-\frac{82}{7}\right) - 14 \] \[ = -82 - 14 \] \[ = -96 \] \[ \left|7(\alpha + \beta) + 4(\gamma + \delta)\right| = |-96| = 96.\]
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to: