The centre of the circle lies on the normal:
\[
4\alpha + 3\beta = 1 \quad \cdots (1)
\]
The distance of the centre \( (\alpha, \beta) \) from the tangents \( L_1 \) and \( L_2 \) is equal:
\[
\text{Distance of } (\alpha, \beta) \text{ from } L_1 = \text{Distance of } (\alpha, \beta) \text{ from } L_2.
\]
From the given equations of the tangents:
\[
3\alpha + 4\beta - 24 = -3\alpha - 4\beta + 32 \quad \Rightarrow \quad 6\alpha = 56 \quad \Rightarrow \quad \alpha = \frac{28}{3}, \quad \beta = \frac{-109}{3}.
\]
Now, the distance of \( (\alpha, \beta) \) from the line \( 3x + 4y = 24 \) is:
\[
r = \sqrt{\left( \frac{28}{3} - 4 \right)^2 + \left( \frac{-109}{3} + 5 \right)^2} \quad (\text{reject as it is greater than 8}).
\]
For \( 3\alpha + 4\beta - 24 = -3\alpha - 4\beta + 32 \) we find:
\[
\alpha = 1, \quad \beta = -1.
\]
Then:
\[
\gamma = \sqrt{(4 - 1)^2 + (-5 + 1)^2} = 5.
\]
Therefore, \( \alpha - \beta + r = 7 \).