Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to:
Given \( 0 \leq x \leq y^2 \) and \( y \geq 3x - 6 \)
Required Area \( A \) is given by:
\( A = \int_{0}^{1} \left[ (-3\sqrt{x}) \, dx - \int_{0}^{1} (3x - 6) \, dx \right] \)
Now, solving for the area:
\( A = 3 \left( \frac{3}{2} x^{3/2} \right) \Big|_{0}^{1} - \left( \frac{3x^2}{2} - 6x \right) \Big|_{0}^{1} \)
\( A = -2 \left[ 1 - 0 \right] \left[ \frac{3}{2} - 6 \right] \)
Thus, the area becomes:
\( A = -2 \times [1] \times \left( \frac{3}{2} - 6 \right) = \frac{5}{2} \, \text{square units} \)
Finally, multiplying by 6:
\( 6A = 6 \times \frac{5}{2} = 15 \, \text{square units} \)
Given the inequalities: \( 0 \leq x \leq y^2 \) and \( y \geq 3x - 6 \), we need to find the required area \( A \).
The area \( A \) is expressed as the difference of two integrals:
\( A = \int_{0}^{1} \left[ (-3\sqrt{x}) \, dx \right] - \int_{0}^{1} \left[ (3x - 6) \, dx \right] \)
Now, solving each integral separately:
For the first integral:
\( A_1 = 3 \left( \frac{3}{2} x^{3/2} \right) \Big|_{0}^{1} \)
For the second integral:
\( A_2 = \left( \frac{3x^2}{2} - 6x \right) \Big|_{0}^{1} \)
Evaluating the integrals at the limits:
\( A_1 = 3 \times \left( \frac{3}{2} \times 1^{3/2} - \frac{3}{2} \times 0^{3/2} \right) = 3 \times \frac{3}{2} = \frac{9}{2} \)
\( A_2 = \left( \frac{3 \times 1^2}{2} - 6 \times 1 \right) - \left( \frac{3 \times 0^2}{2} - 6 \times 0 \right) = \frac{3}{2} - 6 = -\frac{9}{2} \)
Now, combining both parts:
\( A = A_1 - A_2 = \frac{9}{2} - \left( -\frac{9}{2} \right) = \frac{9}{2} + \frac{9}{2} = 9 \, \text{square units} \)
Thus, the total area is:
\( 6A = 6 \times \frac{5}{2} = 15 \, \text{square units} \)
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
