Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to:
Given \( 0 \leq x \leq y^2 \) and \( y \geq 3x - 6 \)
Required Area \( A \) is given by:
\( A = \int_{0}^{1} \left[ (-3\sqrt{x}) \, dx - \int_{0}^{1} (3x - 6) \, dx \right] \)
Now, solving for the area:
\( A = 3 \left( \frac{3}{2} x^{3/2} \right) \Big|_{0}^{1} - \left( \frac{3x^2}{2} - 6x \right) \Big|_{0}^{1} \)
\( A = -2 \left[ 1 - 0 \right] \left[ \frac{3}{2} - 6 \right] \)
Thus, the area becomes:
\( A = -2 \times [1] \times \left( \frac{3}{2} - 6 \right) = \frac{5}{2} \, \text{square units} \)
Finally, multiplying by 6:
\( 6A = 6 \times \frac{5}{2} = 15 \, \text{square units} \)
Given the inequalities: \( 0 \leq x \leq y^2 \) and \( y \geq 3x - 6 \), we need to find the required area \( A \).
The area \( A \) is expressed as the difference of two integrals:
\( A = \int_{0}^{1} \left[ (-3\sqrt{x}) \, dx \right] - \int_{0}^{1} \left[ (3x - 6) \, dx \right] \)
Now, solving each integral separately:
For the first integral:
\( A_1 = 3 \left( \frac{3}{2} x^{3/2} \right) \Big|_{0}^{1} \)
For the second integral:
\( A_2 = \left( \frac{3x^2}{2} - 6x \right) \Big|_{0}^{1} \)
Evaluating the integrals at the limits:
\( A_1 = 3 \times \left( \frac{3}{2} \times 1^{3/2} - \frac{3}{2} \times 0^{3/2} \right) = 3 \times \frac{3}{2} = \frac{9}{2} \)
\( A_2 = \left( \frac{3 \times 1^2}{2} - 6 \times 1 \right) - \left( \frac{3 \times 0^2}{2} - 6 \times 0 \right) = \frac{3}{2} - 6 = -\frac{9}{2} \)
Now, combining both parts:
\( A = A_1 - A_2 = \frac{9}{2} - \left( -\frac{9}{2} \right) = \frac{9}{2} + \frac{9}{2} = 9 \, \text{square units} \)
Thus, the total area is:
\( 6A = 6 \times \frac{5}{2} = 15 \, \text{square units} \)
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
The integral $ \int_{0}^{\pi} \frac{8x dx}{4 \cos^2 x + \sin^2 x} $ is equal to
Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: