$P(x, y, z), Q(x, y, 0); \quad x^2 + y^2 + z^2 = \gamma^2$
$OQ = xi + yj$
$\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$
$\cos \phi = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$
$\implies \sin^2 \phi = \frac{x^2 + y^2}{x^2 + y^2 + z^2}$
$\textbf{Distance of } P \textbf{ from x-axis} = \sqrt{y^2 + z^2}$
$\implies \sqrt{\gamma^2 - x^2} \implies \gamma \sqrt{1 - \frac{x^2}{\gamma^2}}$
$= \gamma \sqrt{1 - \cos^2 \theta \sin^2 \phi}$
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: