$P(x, y, z), Q(x, y, 0); \quad x^2 + y^2 + z^2 = \gamma^2$
$OQ = xi + yj$
$\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$
$\cos \phi = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$
$\implies \sin^2 \phi = \frac{x^2 + y^2}{x^2 + y^2 + z^2}$
$\textbf{Distance of } P \textbf{ from x-axis} = \sqrt{y^2 + z^2}$
$\implies \sqrt{\gamma^2 - x^2} \implies \gamma \sqrt{1 - \frac{x^2}{\gamma^2}}$
$= \gamma \sqrt{1 - \cos^2 \theta \sin^2 \phi}$
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $