Step 1: Solve for \(n\) from given \(T\) values. Using the property of binomial coefficients: \(T_n = \binom{n}{r}\). Solving \( \binom{n-1}{r} = 28, \binom{n}{r} = 56, \binom{n+1}{r} = 70 \) gives \(n = 8\) and \(r = 3\).
Step 2: Find centroid coordinates. Centroid \(G\) of triangle ABC has coordinates: \[ G = \left(\frac{4\cos t + 2\sin t + 3r_n - 1}{3}, \frac{4\sin t - 2\cos t + r^2_n - n - 1}{3}\right) \]
Step 3: Express \(x\) and \(y\) in terms of \(t\) and simplify. Insert values and simplify the coordinates to express \(x\) and \(y\) as functions of \(t\).
Step 4: Derive the equation of the locus. Substitute \(x\) and \(y\) into \((3x - 1)^2 + (3y)^2 = a\) and simplify to find \(a\).
Conclusion: After solving, \(a = 6\).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is