Let \( T \) denote the sum of the convergent series \[ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \ldots + (-1)^{n+1} \frac{1}{n} + \ldots\] and let \( S \) denote the sum of the convergent series \[ 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \sum_{n=1}^{\infty} a_n\] where \[ a_{3m-2} = \frac{1}{2m-1} , a_{3m-1} = 0, \text{ and } a_{3m} = \frac{-1}{4m} \text{ for } m \in \mathbb{N}.\] Then which one of the following is true?