\(-1\)
\(-\frac 54\)
\(\frac {\sqrt {17}-13}{8}\)
\(\frac {\sqrt {17}-16}{8}\)
![Let [t] denote the greatest integer less than or equal to t](https://images.collegedunia.com/public/qa/images/content/2024_01_18/Screenshot_1b4c1fc71705587192253.png)
\(∫_0^1 [ -8x^2 + 6x - 1] dx\)
\(= ∫_0^\frac 14 (-1)dx + ∫_{\frac 14}^{\frac 34} 0dx + ∫_{\frac 34}^{\frac 12} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{\frac 34} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{1}(-3)dx\)
\(= -\frac 14 -\frac 14 - 2 ( \frac {3+\sqrt {17}}{8} - \frac 34) - 3 (1 - \frac {3+\sqrt {17}}{8})\)
\(=\frac {\sqrt {17}-13}{8}\)
So, the correct option is (C): \(\frac {\sqrt {17}-13}{8}\)
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
The dimensions of a physical quantity \( \epsilon_0 \frac{d\Phi_E}{dt} \) are similar to [Symbols have their usual meanings]

Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.