\(-1\)
\(-\frac 54\)
\(\frac {\sqrt {17}-13}{8}\)
\(\frac {\sqrt {17}-16}{8}\)
\(∫_0^1 [ -8x^2 + 6x - 1] dx\)
\(= ∫_0^\frac 14 (-1)dx + ∫_{\frac 14}^{\frac 34} 0dx + ∫_{\frac 34}^{\frac 12} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{\frac 34} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{1}(-3)dx\)
\(= -\frac 14 -\frac 14 - 2 ( \frac {3+\sqrt {17}}{8} - \frac 34) - 3 (1 - \frac {3+\sqrt {17}}{8})\)
\(=\frac {\sqrt {17}-13}{8}\)
So, the correct option is (C): \(\frac {\sqrt {17}-13}{8}\)
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.