\(-1\)
\(-\frac 54\)
\(\frac {\sqrt {17}-13}{8}\)
\(\frac {\sqrt {17}-16}{8}\)
![Let [t] denote the greatest integer less than or equal to t](https://images.collegedunia.com/public/qa/images/content/2024_01_18/Screenshot_1b4c1fc71705587192253.png)
\(∫_0^1 [ -8x^2 + 6x - 1] dx\)
\(= ∫_0^\frac 14 (-1)dx + ∫_{\frac 14}^{\frac 34} 0dx + ∫_{\frac 34}^{\frac 12} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{\frac 34} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{1}(-3)dx\)
\(= -\frac 14 -\frac 14 - 2 ( \frac {3+\sqrt {17}}{8} - \frac 34) - 3 (1 - \frac {3+\sqrt {17}}{8})\)
\(=\frac {\sqrt {17}-13}{8}\)
So, the correct option is (C): \(\frac {\sqrt {17}-13}{8}\)
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.