\(-1\)
\(-\frac 54\)
\(\frac {\sqrt {17}-13}{8}\)
\(\frac {\sqrt {17}-16}{8}\)
![Let [t] denote the greatest integer less than or equal to t](https://images.collegedunia.com/public/qa/images/content/2024_01_18/Screenshot_1b4c1fc71705587192253.png)
\(∫_0^1 [ -8x^2 + 6x - 1] dx\)
\(= ∫_0^\frac 14 (-1)dx + ∫_{\frac 14}^{\frac 34} 0dx + ∫_{\frac 34}^{\frac 12} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{\frac 34} (-1)dx + ∫_{\frac {3+\sqrt {17}}{8}}^{1}(-3)dx\)
\(= -\frac 14 -\frac 14 - 2 ( \frac {3+\sqrt {17}}{8} - \frac 34) - 3 (1 - \frac {3+\sqrt {17}}{8})\)
\(=\frac {\sqrt {17}-13}{8}\)
So, the correct option is (C): \(\frac {\sqrt {17}-13}{8}\)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.