Let [t] denote the greatest integer function. If \(\int\limits_0^{2.4}[x^2]dx=α+β√2+γ√3+δ√5,\) then α+β+γ +δ is equal to _____.
To solve integrals with the greatest integer function, identify intervals where the function is constant and calculate the definite integral for each segment.
The greatest integer function \( [x^2] \) takes constant integer values over specific intervals of \(x\), so split the integral based on these intervals:
1. Intervals for \( [x^2] \):
2. Evaluate each integral:
3. Combine all results:
\[ \int_0^{2.4} [x^2] dx = (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(\sqrt{5} - \sqrt{3}) + 4(2.4 - \sqrt{5}). \]
Simplify:
\[ = 9 - \sqrt{2} - \sqrt{3} - \sqrt{5}. \]
4. Match the format:
Compare with \( \alpha + \beta \sqrt{2} + \gamma \sqrt{3} + \delta \sqrt{5} \), so:
\[ \alpha = 9, \quad \beta = -1, \quad \gamma = -1, \quad \delta = -1. \]
5. Sum the coefficients:
\[ \alpha + \beta + \gamma + \delta = 9 - 1 - 1 - 1 = 6. \]
Final Answer:
\[ 6. \]
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.