Step 1: The expression involves a sum of terms as \( x \to \infty \). First, analyze the terms inside the limit by considering how each part behaves as \( x \to \infty \). The floor function \( [t] \) simplifies as \( x \) grows large.
Step 2: Simplify the sum involving \( \left[ k/x \right] \) terms, and use asymptotic analysis to approximate the behavior of the entire sum.
Step 3: After simplifying, solve for the least value of \( p \in \mathbb{N} \) such that the inequality holds true. Thus, the least value of \( p \) is found.
Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \] \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.