Let
\[
z = x + iy, \quad \bar{z} = x - iy,
\]
where \( x, y \in \mathbb{R} \).
Step 1: Substitute in the given equation.
\[
4(x + iy)^2 + (x - iy) = 0.
\]
\[
4(x^2 - y^2 + 2ixy) + x - iy = 0.
\]
\[
(4x^2 - 4y^2 + x) + i(8xy - y) = 0.
\]
Step 2: Equate real and imaginary parts.
Real part:
\[
4x^2 - 4y^2 + x = 0 \quad (1)
\]
Imaginary part:
\[
8xy - y = 0 \Rightarrow y(8x - 1) = 0. \quad (2)
\]
Step 3: Solve the cases.
{Case 1:} \( y = 0 \)
From (1):
\[
4x^2 + x = 0 \Rightarrow x(4x + 1) = 0.
\]
\[
x = 0,\; -\frac{1}{4}.
\]
Thus,
\[
z = 0,\; -\frac{1}{4}.
\]
{Case 2:} \( 8x - 1 = 0 \Rightarrow x = \frac{1}{8} \)
Substitute in (1):
\[
4\left(\frac{1}{64}\right) - 4y^2 + \frac{1}{8} = 0
\Rightarrow \frac{1}{16} - 4y^2 + \frac{1}{8} = 0.
\]
\[
4y^2 = \frac{3}{16}
\Rightarrow y^2 = \frac{3}{64}.
\]
\[
y = \pm \frac{\sqrt{3}}{8}.
\]
Thus,
\[
z = \frac{1}{8} \pm i\frac{\sqrt{3}}{8}.
\]
Step 4: Compute \( |z|^2 \) for each solution.
\[
|0|^2 = 0.
\]
\[
\left|-\frac{1}{4}\right|^2 = \frac{1}{16}.
\]
\[
\left|\frac{1}{8} \pm i\frac{\sqrt{3}}{8}\right|^2
= \frac{1}{64} + \frac{3}{64} = \frac{4}{64} = \frac{1}{16}.
\]
Step 5: Find the required sum.
\[
\sum_{z \in S} |z|^2
= 0 + \frac{1}{16} + \frac{1}{16}
= \frac{3}{16}.
\]
Final Answer:
\[
\boxed{\dfrac{3}{16}}
\]