Concept:
The sign of \(\sin x\), \(\cos x\), \(\tan x\), and \(\cot x\) depends on the quadrant in which
the angle \(x\) lies.
Since \(x\neq \frac{n\pi}{2}\), none of these trigonometric functions is zero.
We evaluate \(f(x)\) separately in each quadrant.
Step 1: Quadrant-wise analysis
Quadrant I \((0<x<\tfrac{\pi}{2})\):
\[
\sin x>0,\ \cos x>0,\ \tan x>0,\ \cot x>0
\]
\[
f(x)=1+1+1+1=4
\]
Quadrant II \((\tfrac{\pi}{2}<x<\pi)\):
\[
\sin x>0,\ \cos x<0,\ \tan x<0,\ \cot x<0
\]
\[
f(x)=1-1-1-1=-2
\]
Quadrant III \((\pi<x<\tfrac{3\pi}{2})\):
\[
\sin x<0,\ \cos x<0,\ \tan x>0,\ \cot x>0
\]
\[
f(x)=-1-1+1+1=0
\]
Quadrant IV \((\tfrac{3\pi}{2}<x<2\pi)\):
\[
\sin x<0,\ \cos x>0,\ \tan x<0,\ \cot x<0
\]
\[
f(x)=-1+1-1-1=-2
\]
Step 2: Determine the range
From all quadrants, the distinct values taken by \(f(x)\) are:
\[
\{4,\ 0,\ -2\}
\]
Step 3: Sum of all elements in the range
\[
4+0+(-2)=2
\]
Final Answer:
\[
\boxed{2}
\]