1. Understanding the Given Information:
We are given the equation $y^2 = 4x$ and $y^2 = 12 - 2x$. From this, we need to find the value of $y$. We are also given that $x = 2$, so we need to substitute this into the equation to find $y$.
2. Substituting the Value of $x$:
From the equation $y^2 = 12 - 2x$, substitute $x = 2$:
$ y^2 = 12 - 2(2) = 12 - 4 = 8 $
So, $ y = \sqrt{8} = 2\sqrt{2} $. Hence, the value of $y$ is $ 2\sqrt{2} $.
3. Setting Up the Integral:
Next, we are given the equation for $A$, the area:
$ A = \int_0^2 2\sqrt{x} dx + \frac{1}{2} \times 3 \times \sqrt{8} $
4. Evaluating the Integral:
First, solve the integral $ \int_0^2 2\sqrt{x} dx $:
Step 1: The integral of $ 2\sqrt{x} $ is $ \frac{4}{3}x^{3/2} $. Evaluating it between $0$ and $2$:
$ \left[ \frac{4}{3} x^{3/2} \right]_0^2 = \frac{4}{3} (2^{3/2}) - 0 = \frac{4}{3} \times 2\sqrt{2} = \frac{8\sqrt{2}}{3} $
5. Completing the Area Calculation:
Now add the second part of the area formula: $ \frac{1}{2} \times 3 \times \sqrt{8} $:
$ \frac{1}{2} \times 3 \times \sqrt{8} = \frac{3\sqrt{8}}{2} = \frac{3 \times 2\sqrt{2}}{2} = 3\sqrt{2} $
6. Final Calculation:
The total area $ A $ is the sum of the two parts:
$ A = \frac{8\sqrt{2}}{3} + 3\sqrt{2} = \frac{8\sqrt{2}}{3} + \frac{9\sqrt{2}}{3} = \frac{17\sqrt{2}}{3} $
7. Concluding the Result:
We can express the final result as:
$ A = \alpha \sqrt{2} \Rightarrow \alpha = \frac{17}{3} $
Final Answer:
The value of $ \alpha $ is $ \frac{17}{3} $.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is: