The required area is given by: \[ \text{Required Area} = \int_0^2 \sqrt{x} \,dx + \frac{1}{2} \times 3 \times \sqrt{8} \]
Given equations: \[ y^2 = 4x, \quad y^2 = 12 - 2x \] Solving for \( x \): \[ x = 2, \quad y = \sqrt{8} \]
\[ A = \int_0^2 2\sqrt{x} \,dx + \frac{1}{2} \times 3 \times \sqrt{8} \] Evaluating the integral: \[ 2 \times \frac{2}{3} x^{3/2} \Big|_0^2 + 3\sqrt{2} \] \[ = \frac{4}{3} \times 2\sqrt{2} + 3\sqrt{2} \] \[ = \frac{17}{3} \sqrt{2} \]
Since the total area is expressed as: \[ \alpha \sqrt{2}, \quad \text{we have} \quad \alpha = \frac{17}{3} \]
\[ \alpha = \frac{17}{3} \]