1. Understanding the Given Information:
We are given the equation $y^2 = 4x$ and $y^2 = 12 - 2x$. From this, we need to find the value of $y$. We are also given that $x = 2$, so we need to substitute this into the equation to find $y$.
2. Substituting the Value of $x$:
From the equation $y^2 = 12 - 2x$, substitute $x = 2$:
$ y^2 = 12 - 2(2) = 12 - 4 = 8 $
So, $ y = \sqrt{8} = 2\sqrt{2} $. Hence, the value of $y$ is $ 2\sqrt{2} $.
3. Setting Up the Integral:
Next, we are given the equation for $A$, the area:
$ A = \int_0^2 2\sqrt{x} dx + \frac{1}{2} \times 3 \times \sqrt{8} $
4. Evaluating the Integral:
First, solve the integral $ \int_0^2 2\sqrt{x} dx $:
Step 1: The integral of $ 2\sqrt{x} $ is $ \frac{4}{3}x^{3/2} $. Evaluating it between $0$ and $2$:
$ \left[ \frac{4}{3} x^{3/2} \right]_0^2 = \frac{4}{3} (2^{3/2}) - 0 = \frac{4}{3} \times 2\sqrt{2} = \frac{8\sqrt{2}}{3} $
5. Completing the Area Calculation:
Now add the second part of the area formula: $ \frac{1}{2} \times 3 \times \sqrt{8} $:
$ \frac{1}{2} \times 3 \times \sqrt{8} = \frac{3\sqrt{8}}{2} = \frac{3 \times 2\sqrt{2}}{2} = 3\sqrt{2} $
6. Final Calculation:
The total area $ A $ is the sum of the two parts:
$ A = \frac{8\sqrt{2}}{3} + 3\sqrt{2} = \frac{8\sqrt{2}}{3} + \frac{9\sqrt{2}}{3} = \frac{17\sqrt{2}}{3} $
7. Concluding the Result:
We can express the final result as:
$ A = \alpha \sqrt{2} \Rightarrow \alpha = \frac{17}{3} $
Final Answer:
The value of $ \alpha $ is $ \frac{17}{3} $.
Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \]
If \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals: