1. Understanding the Given Information:
We are given the equation $y^2 = 4x$ and $y^2 = 12 - 2x$. From this, we need to find the value of $y$. We are also given that $x = 2$, so we need to substitute this into the equation to find $y$.
2. Substituting the Value of $x$:
From the equation $y^2 = 12 - 2x$, substitute $x = 2$:
$ y^2 = 12 - 2(2) = 12 - 4 = 8 $
So, $ y = \sqrt{8} = 2\sqrt{2} $. Hence, the value of $y$ is $ 2\sqrt{2} $.
3. Setting Up the Integral:
Next, we are given the equation for $A$, the area:
$ A = \int_0^2 2\sqrt{x} dx + \frac{1}{2} \times 3 \times \sqrt{8} $
4. Evaluating the Integral:
First, solve the integral $ \int_0^2 2\sqrt{x} dx $:
Step 1: The integral of $ 2\sqrt{x} $ is $ \frac{4}{3}x^{3/2} $. Evaluating it between $0$ and $2$:
$ \left[ \frac{4}{3} x^{3/2} \right]_0^2 = \frac{4}{3} (2^{3/2}) - 0 = \frac{4}{3} \times 2\sqrt{2} = \frac{8\sqrt{2}}{3} $
5. Completing the Area Calculation:
Now add the second part of the area formula: $ \frac{1}{2} \times 3 \times \sqrt{8} $:
$ \frac{1}{2} \times 3 \times \sqrt{8} = \frac{3\sqrt{8}}{2} = \frac{3 \times 2\sqrt{2}}{2} = 3\sqrt{2} $
6. Final Calculation:
The total area $ A $ is the sum of the two parts:
$ A = \frac{8\sqrt{2}}{3} + 3\sqrt{2} = \frac{8\sqrt{2}}{3} + \frac{9\sqrt{2}}{3} = \frac{17\sqrt{2}}{3} $
7. Concluding the Result:
We can express the final result as:
$ A = \alpha \sqrt{2} \Rightarrow \alpha = \frac{17}{3} $
Final Answer:
The value of $ \alpha $ is $ \frac{17}{3} $.
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?