Consider the inequality:
\[ ax^2 + 2(a + 1)x + 9a + 4 < 0 \quad \forall x \in \mathbb{R} \]
For the quadratic to be negative for all values of \( x \), the coefficient of \( x^2 \) must be negative:
\[ a < 0 \]
Since we are looking for positive integral values of \( a \), no such values exist.
If the roots of the quadratic equation \( ax^2 + bx + c = 0 \) are real and equal, then: