Consider the inequality:
\[ ax^2 + 2(a + 1)x + 9a + 4 < 0 \quad \forall x \in \mathbb{R} \]
For the quadratic to be negative for all values of \( x \), the coefficient of \( x^2 \) must be negative:
\[ a < 0 \]
Since we are looking for positive integral values of \( a \), no such values exist.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: