To determine the number of positive integral values of \( a \) for which the inequality
\(\frac{a x^2 + 2(a + 1)x + 9a + 4}{x^2 - 8x + 32} < 0\) holds for all \( x \in \mathbb{R} \), we need to analyze the expression carefully.
Therefore, the number of elements in the set \( S \) is 0.
Consider the inequality:
\[ ax^2 + 2(a + 1)x + 9a + 4 < 0 \quad \forall x \in \mathbb{R} \]
For the quadratic to be negative for all values of \( x \), the coefficient of \( x^2 \) must be negative:
\[ a < 0 \]
Since we are looking for positive integral values of \( a \), no such values exist.
