Let S be the set of all the natural numbers, for which the line
\(\frac{x}{a}+\frac{y}{b}=2 \)
is a tangent to the curve
\((\frac{x}{a})^n+(\frac{y}{b})^n=2 \)
at the point (a, b), ab ≠ 0. Then :
\(S=\left\{2k:k∈N\right\}\)
\(S=N\)
The correct answer is (D) : S=N
\((\frac{x}{a})^n+(\frac{y}{b})^n=2 \)
\(⇒\frac{n}{a}(\frac{x}{a})^{n-1} +\frac{n}{b}(\frac{y}{b})^{n-1}\frac{dy}{dx} =0\)
\(⇒\frac{dy}{dx}=-\frac{b}{a}(\frac{bx}{ay})^{n-1}\)
\(\frac{dy}{dx_{(a,b)}}=-\frac{b}{a}\)
So line always touches the given curve.
m×n = -1