The graph below depicts both expressions. 
The desired area is equal to 4 times the area of the red triangle.
The area of the red triangle is calculated using the formula: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] Given the values, we compute: \[ \text{Area} = \frac{1}{2} \times 1 \times 1 = \frac{1}{2} \text{ square units} \]
Therefore, the required area is: \[ 4 \times \frac{1}{2} = 2 \text{ square units} \]
Final Answer: \( \boxed{2} \) square units

For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: