Let $S$ be the reflection of a point $Q$ with respect to the plane given by
$\vec{r}=-(t+p) \hat{ i }+t \hat{ j }+(1+p) \hat{ k }$
where $t, p$ are real parameters and $\hat{ i }, \hat{ j }, \hat{ k }$ are the unit vectors along the three positive coordinate axes. If the position vectors of $Q$ and $S$ are $10 \hat{ i }+15 \hat{ j }+20 \hat{ k }$ and $\alpha \hat{ i }+\beta \hat{ j }+\gamma \hat{ k }$ respectively, then which of the following is/are TRUE ?
Given :
Equation of the plane :
\(\vec{r}=-(t+p) \hat{ i }+t \hat{ j }+(1+p) \hat{ k }\)
\(\vec{r}=\hat{k}+t(-\hat{i}+\hat{j})+p(-\hat{i}+\hat{k})\)
Standard form of Equation of plane :
\([\vec{r}-\hat{k}\ \ \ \ \ \ \ \ \ \ \hat{i}+\hat{j}\ \ \ \ \ \ \ \ \ -\hat{i}+\hat{k}]=0\)
Therefore, x + y + z = 1 ……. (i)
Coordinates of Q and S :
Q = (10, 15, 20)
S = (α, β, γ)
∴ \(⇒\frac{α-10}{1}=\frac{β-15}{1}=\frac{γ-20}{1}\)
\(=\frac{-2(10+15+20-1)}{3}\)
∴ α = 10 = β = -15 γ - 20 = \(-\frac{83}{3}\)
Therefore, the values are as follows :
\(α=-\frac{58}{3},\ β=-\frac{43}{3},γ=-\frac{83}{3}\)
∴ 3 (α + β) = −101 so, option (A) is correct.
3(β + γ) =−71 so, option (B) is correct.
3(γ + α) = −86 so, option (C) is correct.
3(α+β+γ)=−129 so, option (D) is incorrect.
So, the correct options are (A), (B) and (C).
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
Mathematically, Geometry is one of the most important topics. The concepts of Geometry are derived w.r.t. the planes. So, Geometry is divided into three major categories based on its dimensions which are one-dimensional geometry, two-dimensional geometry, and three-dimensional geometry.
Consider a line L that is passing through the three-dimensional plane. Now, x,y and z are the axes of the plane and α,β, and γ are the three angles the line makes with these axes. These are commonly known as the direction angles of the plane. So, appropriately, we can say that cosα, cosβ, and cosγ are the direction cosines of the given line L.
