The given series is:
\[
S = 109 + \frac{108}{5} + \frac{107}{5^2} + \frac{106}{5^3} + \cdots
\]
This is a geometric series with the first term \( a = 109 \) and the common ratio \( r = \frac{1}{5} \).
We can write this sum as:
\[
S = 109 + 108 \cdot \frac{1}{5} + 107 \cdot \frac{1}{5^2} + \cdots = \sum_{n=0}^{\infty} (109 - n) \cdot \frac{1}{5^n}
\]
Rearranging the terms and factoring:
\[
S = 109 \left( 1 + \frac{1}{5} + \frac{1}{5^2} + \cdots \right) - \left( 0 + \frac{1}{5} + \frac{2}{5^2} + \cdots \right)
\]
The first sum is a geometric series:
\[
\sum_{n=0}^{\infty} \frac{1}{5^n} = \frac{1}{1 - \frac{1}{5}} = \frac{5}{4}
\]
Thus,
\[
S = 109 \cdot \frac{5}{4} - \left( \frac{1}{5} + \frac{2}{5^2} + \cdots \right)
\]
Now, calculate the second sum, which is another geometric series. It can be computed as:
\[
\sum_{n=1}^{\infty} \frac{n}{5^n} = \frac{5}{16}
\]
Substituting the values back:
\[
S = 109 \cdot \frac{5}{4} - \frac{5}{16} = 136.25 - 0.3125 = 136
\]
Now, calculate the final value of \( (16S - (25)^{3}) \):
\[
16S = 16 \times 136 = 2176
\]
\[
% Option
(25)^{3} = 15625
\]
Thus:
\[
16S - (25)^{3} = 2176 - 15625 = - 2175
\]
Therefore, the value of \( 16S - (25)^{3} \) is \( \boxed{2175} \).