Question:

Let R1 and R2 be the radii of convergence of the power series \(\sum\limits_{n=1}^{\infin}(-1)^nx^{n-1}\) and \(\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)}\), respectively. Then

Updated On: Oct 1, 2024
  • R1 = R2
  • R2 > 1
  • \(\sum\limits_{n=1}^{\infin}(-1)^nx^{n-1}\) converges for all x ∈ [−1, 1]
  • \(\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)}\) converges for all x ∈ [−1, 1]
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, D

Solution and Explanation

The correct option is (A) : R1 = R2 and (D) : \(\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)}\) converges for all x ∈ [−1, 1].
Was this answer helpful?
0
0