Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer. (A) (2, 4) ∈ R (B) (3, 8) ∈R (C) (6, 8) ∈R (D) (8, 7) ∈ R
R = {(a, b): a = b − 2, b > 6 }
Now, since b > 6, (2, 4) ∉ R
Also, as 3 ≠ 8 − 2, (3, 8) ∉ R
And, as 8 ≠ 7 − 2
∴ (8, 7) ∉ R
Now, consider (6, 8).
We have 8 > 6 and also, 6 = 8 − 2.
∴ (6, 8) ∈ R
The correct answer is C.
Let \( A = \{0,1,2,\ldots,9\} \). Let \( R \) be a relation on \( A \) defined by \((x,y) \in R\) if and only if \( |x - y| \) is a multiple of \(3\). Given below are two statements:
Statement I: \( n(R) = 36 \).
Statement II: \( R \) is an equivalence relation.
In the light of the above statements, choose the correct answer from the options given below.
Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.
A relation R in a set, say A is a universal relation if each element of A is related to every element of A.
R = A × A.
Every element of set A is related to itself only then the relation is identity relation.
Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1
If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.
A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.
A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A
A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.