The coordinates of \( Q \) are given by:
\[ x = y, \quad z = 1 \quad \Rightarrow \quad Q(r, r, 1) \]The coordinates of \( R \) are given by:
\[ x = -y, \quad z = -1 \quad \Rightarrow \quad R(k, -k, -1) \]Calculate vector \(\overrightarrow{PQ}\):
\[ \overrightarrow{PQ} = (a - r)\hat{i} + (a - r)\hat{j} + (a - 1)\hat{k} \]Similarly, calculate vector \(\overrightarrow{PR}\):
\[ \overrightarrow{PR} = (a - k)\hat{i} + (a + k)\hat{j} + (a + 1)\hat{k} \]Since \(\overrightarrow{PQ} \perp \overrightarrow{PR}\):
\[ (a - r)(a - k) + (a - r)(a + k) + (a - 1)(a + 1) = 0 \]Simplifying:
\[ a = 1 \quad \text{or} \quad -1 \]Hence:
\[ 12a^2 = 12 \]