The coordinates of \( Q \) are given by:
\[ x = y, \quad z = 1 \quad \Rightarrow \quad Q(r, r, 1) \]The coordinates of \( R \) are given by:
\[ x = -y, \quad z = -1 \quad \Rightarrow \quad R(k, -k, -1) \]Calculate vector \(\overrightarrow{PQ}\):
\[ \overrightarrow{PQ} = (a - r)\hat{i} + (a - r)\hat{j} + (a - 1)\hat{k} \]Similarly, calculate vector \(\overrightarrow{PR}\):
\[ \overrightarrow{PR} = (a - k)\hat{i} + (a + k)\hat{j} + (a + 1)\hat{k} \]Since \(\overrightarrow{PQ} \perp \overrightarrow{PR}\):
\[ (a - r)(a - k) + (a - r)(a + k) + (a - 1)(a + 1) = 0 \]Simplifying:
\[ a = 1 \quad \text{or} \quad -1 \]Hence:
\[ 12a^2 = 12 \]To solve the problem, we determine the coordinates of points Q and R, verify that ∠QPR is a right angle, and compute \( 12a^2 \) to confirm it matches the given range \([12, 12]\).
Step 1: Finding Coordinates of Q and R
The line \( x = y, z = 1 \) can be written in parametric form as:
\[ (x, y, z) = (t, t, 1) \]
The perpendicular from \( P(a, a, a) \) to this line satisfies:
\[ (t - a)(1, 1, 1) \cdot (1, 1, 0) = 0 \] \[ 2(t - a) = 0 \Rightarrow t = a \]
Hence, \( Q = (a, a, 1) \).
For the line \( x = -y, z = -1 \), the parametric form is:
\[ (x, y, z) = (s, -s, -1) \]
The perpendicular from \( P(a, a, a) \) to this line satisfies:
\[ (s - a, -s - a, -1 - a) \cdot (1, -1, 0) = 0 \] \[ (s - a) - (-s - a) = 0 \Rightarrow s = 0 \]
Thus, \( R = (0, 0, -1) \).
Step 2: Verifying ∠QPR = 90°
\[ \overrightarrow{PQ} = Q - P = (0, 0, 1 - a), \quad \overrightarrow{PR} = R - P = (-a, -a, -1 - a) \]
Dot product:
\[ \overrightarrow{PQ} \cdot \overrightarrow{PR} = 0 \cdot (-a) + 0 \cdot (-a) + (1 - a)(-1 - a) \] \[ (1 - a)(-1 - a) = 0 \Rightarrow a^2 + 2a + 1 = 0 \Rightarrow (a + 1)^2 = 0 \] \[ \therefore a = -1 \]
Step 3: Calculating \( 12a^2 \)
\[ 12a^2 = 12(-1)^2 = 12 \]
Hence, the value lies within the range \([12, 12]\).
Conclusion: \( 12a^2 = 12 \), confirming the required condition.
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 