The coordinates of \( Q \) are given by:
\[ x = y, \quad z = 1 \quad \Rightarrow \quad Q(r, r, 1) \]The coordinates of \( R \) are given by:
\[ x = -y, \quad z = -1 \quad \Rightarrow \quad R(k, -k, -1) \]Calculate vector \(\overrightarrow{PQ}\):
\[ \overrightarrow{PQ} = (a - r)\hat{i} + (a - r)\hat{j} + (a - 1)\hat{k} \]Similarly, calculate vector \(\overrightarrow{PR}\):
\[ \overrightarrow{PR} = (a - k)\hat{i} + (a + k)\hat{j} + (a + 1)\hat{k} \]Since \(\overrightarrow{PQ} \perp \overrightarrow{PR}\):
\[ (a - r)(a - k) + (a - r)(a + k) + (a - 1)(a + 1) = 0 \]Simplifying:
\[ a = 1 \quad \text{or} \quad -1 \]Hence:
\[ 12a^2 = 12 \]Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $