Since \(M(2, 1, 2)\) is the midpoint of \(PQ\) and \(R(-1, 4, 2)\) is the third vertex, the centroid \(G\) divides \(MR\) in the ratio \(1 : 2\). Using the section formula to find \(G\):
\[ G = \left(\frac{1 \cdot (-1) + 2 \cdot 2}{1 + 2}, \frac{1 \cdot 4 + 2 \cdot 1}{1 + 2}, \frac{1 \cdot 2 + 2 \cdot 2}{1 + 2}\right) = (1, 2, 2) \]
Solving the parametric equations of the lines, we find the point of intersection \(A\) to be:
\(A = (2, -6, 0)\)
Using the distance formula between points \(G(1, 2, 2)\) and \(A(2, -6, 0)\):
\[ AG = \sqrt{(2 - 1)^2 + (-6 - 2)^2 + (0 - 2)^2} = \sqrt{1 + 64 + 4} = \sqrt{69} \]
So, the correct answer is: \(\sqrt{69}\)