Since \(M(2, 1, 2)\) is the midpoint of \(PQ\) and \(R(-1, 4, 2)\) is the third vertex, the centroid \(G\) divides \(MR\) in the ratio \(1 : 2\). Using the section formula to find \(G\):
\[ G = \left(\frac{1 \cdot (-1) + 2 \cdot 2}{1 + 2}, \frac{1 \cdot 4 + 2 \cdot 1}{1 + 2}, \frac{1 \cdot 2 + 2 \cdot 2}{1 + 2}\right) = (1, 2, 2) \]
Solving the parametric equations of the lines, we find the point of intersection \(A\) to be:
\(A = (2, -6, 0)\)
Using the distance formula between points \(G(1, 2, 2)\) and \(A(2, -6, 0)\):
\[ AG = \sqrt{(2 - 1)^2 + (-6 - 2)^2 + (0 - 2)^2} = \sqrt{1 + 64 + 4} = \sqrt{69} \]
So, the correct answer is: \(\sqrt{69}\)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).