The normal vector \( \vec{n}_{\pi} \) of plane \( \pi \) is perpendicular to normals of:
- \( \vec{n}_1 = (2, 3, -1) \)
- \( \vec{n}_2 = (1, -1, 2) \)
Hence, \( \vec{n}_{\pi} \) is parallel to cross product:
\[
\vec{n}_{\pi} = \vec{n}_1 \times \vec{n}_2
= \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & -1 \\
1 & -1 & 2
\end{vmatrix}
= \mathbf{i}(3 \cdot 2 - (-1)(-1)) - \mathbf{j}(2 \cdot 2 - (-1)(1)) + \mathbf{k}(2 \cdot (-1) - 3 \cdot 1)
= \langle 6 - 1,\ - (4 + 1),\ -2 - 3 \rangle
= \langle 5,\ -5,\ -5 \rangle
\]
So, direction ratios of required plane: \( a = 5,\ b = -5,\ c = -5 \)
Equation becomes:
\[
5x - 5y - 5z + d = 0
\Rightarrow \text{Passes through } (11, 7, 5):
\Rightarrow 5(11) - 5(7) - 5(5) + d = 0
\Rightarrow 55 - 35 - 25 + d = 0 \Rightarrow -5 + d = 0 \Rightarrow d = 5
\]
Now:
\[
\frac{a}{b} + \frac{b}{d} = \frac{5}{-5} + \frac{-5}{5} = -1 -1 = \boxed{-2}
\]