Question:

Let $ L_1 $ be the line of intersection of the planes given by the equations $$ 2x + 3y + z = 4 \quad \text{and} \quad x + 2y + z = 5. $$ Let $ L_2 $ be the line passing through the point $ P(2, -1, 3) $ and parallel to $ L_1 $. Let $ M $ denote the plane given by the equation $$ 2x + y - 2z = 6. $$ Suppose that the line $ L_2 $ meets the plane $ M $ at the point $ Q $. Let $ R $ be the foot of the perpendicular drawn from $ P $ to the plane $ M $. Then which of the following statements is (are) TRUE?

Show Hint

To analyze 3D geometry problems, use direction vectors from plane intersections, substitute parametric lines into plane equations, and apply vector operations for distances and areas.
Updated On: May 19, 2025
  • The length of the line segment \( PQ \) is \( 9\sqrt{3} \)
  • The length of the line segment \( QR \) is 15
  • The area of \( \triangle PQR \) is \( \dfrac{3}{2} \sqrt{234} \)
  • The acute angle between the line segments \( PQ \) and \( PR \) is \( \cos^{-1} \left(\dfrac{1}{2\sqrt{3}}\right) \) 

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, C

Solution and Explanation

Step 1: Find the equation of line \( L_1 \) 
\( L_1 \) is the line of intersection of the planes given by: \[ 2x + 3y + z = 4 \quad (1) \] \[ x + 2y + z = 5 \quad (2) \] To find the line of intersection, subtract equation (2) from equation (1): \[ (2x + 3y + z) - (x + 2y + z) = 4 - 5 \] \[ x + y = -1 \quad \text{or} \quad x = -1 - y \quad (3) \] Substitute \( x = -1 - y \) into equation (2): \[ (-1 - y) + 2y + z = 5 \] \[ -1 - y + 2y + z = 5 \] \[ y + z = 6 \quad \text{or} \quad z = 6 - y \quad (4) \] Now express \( x \) and \( z \) in terms of \( y \): - \( x = -1 - y \) 
- \( z = 6 - y \) Let’s use \( y = t \) as the parameter. Then: - \( x = -1 - t \) 
- \( y = t \) 
- \( z = 6 - t \) To find a point on \( L_1 \), set \( t = 0 \):
- \( x = -1 \), \( y = 0 \), \( z = 6 \) 
So, a point on \( L_1 \) is \( (-1, 0, 6) \).
The direction vector of \( L_1 \) can be found by observing the coefficients of \( t \):
- As \( t \) changes, \( x = -1 - t \), \( y = t \), \( z = 6 - t \), so the direction vector is \( (-1, 1, -1) \).
Thus, the parametric equation of \( L_1 \) is: \[ x = -1 - t, \quad y = t, \quad z = 6 - t \] Or in symmetric form: \[ \frac{x + 1}{-1} = \frac{y}{1} = \frac{z - 6}{-1} \] Step 2: Find the equation of line \( L_2 \) 
\( L_2 \) passes through the point \( P(2, -1, 3) \) and is parallel to \( L_1 \). Since \( L_2 \) is parallel to \( L_1 \), it has the same direction vector, \( (-1, 1, -1) \). The parametric equation of \( L_2 \) passing through \( P(2, -1, 3) \) with direction vector \( (-1, 1, -1) \) is: \[ x = 2 - s, \quad y = -1 + s, \quad z = 3 - s \] Step 3: Find point \( Q \), the intersection of \( L_2 \) with plane \( M \) 
Plane \( M \) is given by: \[ 2x + y - 2z = 6 \quad (5) \] Substitute the parametric equations of \( L_2 \) into the equation of plane \( M \): \[ 2(2 - s) + (-1 + s) - 2(3 - s) = 6 \] \[ 4 - 2s - 1 + s - 6 + 2s = 6 \] \[ (4 - 1 - 6) + (-2s + s + 2s) = 6 \] \[ -3 + s = 6 \] \[ s = 9 \] Now, find the coordinates of \( Q \) by substituting \( s = 9 \) into the equation of \( L_2 \):
- \( x = 2 - 9 = -7 \) 
- \( y = -1 + 9 = 8 \) 
- \( z = 3 - 9 = -6 \) So, point \( Q \) is \( (-7, 8, -6) \). 
Step 4: Find point \( R \), the foot of the perpendicular from \( P \) to plane \( M \) 
The normal vector to plane \( M \), \( 2x + y - 2z = 6 \), is \( (2, 1, -2) \). The line from \( P(2, -1, 3) \) perpendicular to plane \( M \) has direction vector \( (2, 1, -2) \). The parametric equation of the line from \( P \) in the direction of the normal is: \[ x = 2 + 2t, \quad y = -1 + t, \quad z = 3 - 2t \] Find where this line intersects plane \( M \): \[ 2(2 + 2t) + (-1 + t) - 2(3 - 2t) = 6 \] \[ 4 + 4t - 1 + t - 6 + 4t = 6 \] \[ (4 - 1 - 6) + (4t + t + 4t) = 6 \] \[ -3 + 9t = 6 \] \[ 9t = 9 \] \[ t = 1 \] Substitute \( t = 1 \):
- \( x = 2 + 2(1) = 4 \) 
- \( y = -1 + 1 = 0 \) 
- \( z = 3 - 2(1) = 1 \) So, point \( R \) is \( (4, 0, 1) \). 
Step 5: Evaluate each option (A) The length of the line segment \( PQ \) is \( 9\sqrt{3} \) 
- \( P = (2, -1, 3) \), \( Q = (-7, 8, -6) \) 
- Vector \( \overrightarrow{PQ} = Q - P = (-7 - 2, 8 - (-1), -6 - 3) = (-9, 9, -9) \) 
- Length of \( PQ = \sqrt{(-9)^2 + 9^2 + (-9)^2} = \sqrt{81 + 81 + 81} = \sqrt{243} = \sqrt{81 \cdot 3} = 9\sqrt{3} \)
Option (A) is true. (B) The length of the line segment \( QR \) is 15 
- \( Q = (-7, 8, -6) \), \( R = (4, 0, 1) \) 
- Vector \( \overrightarrow{QR} = R - Q = (4 - (-7), 0 - 8, 1 - (-6)) = (11, -8, 7) \) 
- Length of \( QR = \sqrt{11^2 + (-8)^2 + 7^2} = \sqrt{121 + 64 + 49} = \sqrt{234} \) Since \( \sqrt{234} \approx 15.297 \), which is not exactly 15, let’s compute \( \sqrt{234} \) more precisely:
- \( 15^2 = 225 \), \( 16^2 = 256 \), so \( \sqrt{234} \) is between 15 and 16, closer to 15 but not exactly 15.
Option (B) is false. (C) The area of \( \triangle PQR \) is \( \frac{3}{2}\sqrt{234} \) 
- Vectors \( \overrightarrow{PQ} = (-9, 9, -9) \), \( \overrightarrow{PR} = R - P = (4 - 2, 0 - (-1), 1 - 3) = (2, 1, -2) \).
- Compute the cross product \( \overrightarrow{PQ} \times \overrightarrow{PR} \): \[ \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\-9 & 9 & -9 \\2 & 1 & -2 \end{vmatrix} \] - \( \mathbf{i} \)-component: \( (9)(-2) - (-9)(1) = -18 + 9 = -9 \) 
- \( \mathbf{j} \)-component: \(-[(-9)(-2) - (-9)(2)] = -[18 - (-18)] = -36 \) 
- \( \mathbf{k} \)-component: \( (-9)(1) - (9)(2) = -9 - 18 = -27 \) 
- So, \( \overrightarrow{PQ} \times \overrightarrow{PR} = (-9, -36, -27) \). - Magnitude: \( \sqrt{(-9)^2 + (-36)^2 + (-27)^2} = \sqrt{81 + 1296 + 729} = \sqrt{2106} = \sqrt{9 \cdot 234} = 3\sqrt{234} \). - Area of \( \triangle PQR = \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}| = \frac{1}{2} \cdot 3\sqrt{234} = \frac{3}{2}\sqrt{234} \). Option (C) is true. (D) The acute angle between the line segments \( PQ \) and \( PR \) is \( \cos^{-1}\left(\frac{1}{2\sqrt{3}}\right) \) 
- \( \overrightarrow{PQ} = (-9, 9, -9) \), \( \overrightarrow{PR} = (2, 1, -2) \).
- Dot product: \( \overrightarrow{PQ} \cdot \overrightarrow{PR} = (-9)(2) + (9)(1) + (-9)(-2) = -18 + 9 + 18 = 9 \).
- Magnitudes: \( |\overrightarrow{PQ}| = 9\sqrt{3} \), \( |\overrightarrow{PR}| = \sqrt{2^2 + 1^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \).
- \( \cos \theta = \frac{\overrightarrow{PQ} \cdot \overrightarrow{PR}}{|\overrightarrow{PQ}| |\overrightarrow{PR}|} = \frac{9}{(9\sqrt{3}) \cdot 3} = \frac{9}{27\sqrt{3}} = \frac{1}{3\sqrt{3}} = \frac{\sqrt{3}}{9} \).
The given angle has \( \cos \theta = \frac{1}{2\sqrt{3}} \). Compare:
- \( \frac{\sqrt{3}}{9} \approx \frac{1.732}{9} \approx 0.192 \) 
- \( \frac{1}{2\sqrt{3}} = \frac{1}{2 \cdot 1.732} \approx \frac{1}{3.464} \approx 0.289 \)
These values are not equal, so the angles are different. Option (D) is false
Final Answer: The true statements are:
- (A) The length of the line segment \( PQ \) is \( 9\sqrt{3} \).
- (C) The area of \( \triangle PQR \) is \( \frac{3}{2}\sqrt{234} \).
Thus, the correct options are (A) and (C).

Was this answer helpful?
0
0

Top Questions on 3D Geometry

View More Questions

Questions Asked in JEE Advanced exam

View More Questions