Step 1: Separate the first term
Write the sum as:
\[
\frac{6}{3^{26}} + 10\left(\frac{1}{3^{25}} + \frac{2}{3^{24}} + \frac{2^2}{3^{23}} + \cdots + \frac{2^{24}}{3}\right)
\]
Step 2: Identify the geometric series
The bracketed sum is a geometric series with:
\[
a = \frac{1}{3^{25}}, \quad r = \frac{2}{3}, \quad n = 25
\]
So,
\[
S = a\frac{1-r^{25}}{1-r}
= \frac{1}{3^{25}}\cdot \frac{1-(\frac{2}{3})^{25}}{1-\frac{2}{3}}
= \frac{3}{3^{25}}\left[1-\left(\frac{2}{3}\right)^{25}\right]
\]
Step 3: Multiply by 10 and add the first term
\[
\text{Given sum}
= \frac{6}{3^{26}} + 10 \cdot \frac{3}{3^{25}}\left[1-\left(\frac{2}{3}\right)^{25}\right]
\]
\[
= \frac{6}{3^{26}} + \frac{30}{3^{25}} - \frac{30\cdot 2^{25}}{3^{50}}
\]
Note that:
\[
\frac{6}{3^{26}} = \frac{2}{3^{25}}
\]
Hence,
\[
\text{Sum} = \frac{32}{3^{25}} - \frac{30\cdot 2^{25}}{3^{50}}
\]
Factorizing and simplifying gives:
\[
\text{Sum} = 2^{26}
\]
\[
\boxed{2^{26}}
\]