Step 1: Rewrite the given expression
The given sum can be written as:
\[
\sum_{k=0}^{1000} x^k (1+x)^{1000-k}
\]
Factor out \((1+x)^{1000}\):
\[
(1+x)^{1000} \sum_{k=0}^{1000} \left(\frac{x}{1+x}\right)^k
\]
Step 2: Use Geometric Series
\[
\sum_{k=0}^{1000} r^k = \frac{1-r^{1001}}{1-r}
\quad \text{where } r=\frac{x}{1+x}
\]
Thus,
\[
= (1+x)^{1000} \cdot \frac{1-\left(\frac{x}{1+x}\right)^{1001}}{1-\frac{x}{1+x}}
\]
\[
= (1+x)^{1001} - x^{1001}
\]
Step 3: Find coefficients of \(x^{499}\) and \(x^{500}\)
Since \(x^{1001}\) does not affect these terms, we only consider:
\[
(1+x)^{1001}
\]
Coefficient of \(x^{499}\):
\[
{}^{1001}C_{499}
\]
Coefficient of \(x^{500}\):
\[
{}^{1001}C_{500}
\]
Step 4: Add the coefficients
\[
{}^{1001}C_{499} + {}^{1001}C_{500}
= {}^{1002}C_{500}
\]
\[
\boxed{{}^{1002}C_{500}}
\]