Find the point of intersection \( P \):
Line \( L_1 \):
\[ \frac{x - 2}{1} = \frac{y - 4}{5} = \frac{z - 2}{1} = \lambda. \]
Parametric coordinates of \( P \) on \( L_1 \):
\[ x = \lambda + 2, \quad y = 5\lambda + 4, \quad z = \lambda + 2. \]
Line \( L_2 \):
\[ \frac{x - 3}{2} = \frac{y - 2}{3} = \frac{z - 3}{2} = \mu. \]
Parametric coordinates of \( P \) on \( L_2 \):
\[ x = 2\mu + 3, \quad y = 3\mu + 2, \quad z = 2\mu + 3. \]
Equate \( x, y, z \) for both lines:
\[ \lambda + 2 = 2\mu + 3 \implies \lambda = 2\mu + 1, \] \[ 5\lambda + 4 = 3\mu + 2 \implies 5(2\mu + 1) + 4 = 3\mu + 2, \] \[ 10\mu + 5 + 4 = 3\mu + 2 \implies 7\mu = -7 \implies \mu = -1. \]
Substituting \( \mu = -1 \):
\[ \lambda = 2(-1) + 1 = -1. \]
Coordinates of \( P \):
\[ P(1, -1, 1). \]
Find the shortest distance from \( P \) to the line \( 4x = 2y = z \):
The equation of the line \( L_3 \) in symmetric form is:
\[ \frac{x}{1/4} = \frac{y}{1/2} = \frac{z}{1}. \]
Let \( Q(k, 2k, 4k) \) be a point on \( L_3 \). Direction ratios of \( PQ \):
\[ \text{DRs of } PQ = (k - 1, 2k + 1, 4k - 1). \]
\( PQ \perp L_3 \): Solve using:
\[ (k - 1)\cdot\frac{1}{4} + (2k + 1)\cdot\frac{1}{2} + (4k - 1)\cdot 1 = 0. \]
Simplify:
\[ \frac{k - 1}{4} + \frac{4k + 2}{4} + 4k - 1 = 0, \] \[ \frac{k - 1}{4} + \frac{4k + 2}{4} + \frac{16k - 4}{4} = 0, \] \[ 21k - 3 = 0 \implies k = \frac{1}{7}. \]
Coordinates of \( Q \):
\[ Q\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right). \]
Calculate \( PQ \):
\[ PQ = \sqrt{\left(\frac{1}{7} - 1\right)^2 + \left(\frac{2}{7} + 1\right)^2 + \left(\frac{4}{7} - 1\right)^2}. \]
Simplify:
\[ PQ = \sqrt{\left(-\frac{6}{7}\right)^2 + \left(\frac{9}{7}\right)^2 + \left(-\frac{3}{7}\right)^2}. \] \[ PQ = \sqrt{\frac{36}{49} + \frac{81}{49} + \frac{9}{49}} = \sqrt{\frac{126}{49}} = \sqrt{\frac{36}{7}} = \frac{3\sqrt{14}}{7}. \]
Option (3) is correct.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: