The equation of the line passing through \( (2, -5, 11) \) and \( (-6, 7, -5) \) is:
\[ \frac{x + 6}{-8} = \frac{y - 7}{12} = \frac{z + 5}{-16} = \lambda. \]
Using the parametric form of the line:
\[ Q(\lambda) = (2\lambda - 6, 7 - 3\lambda, 4\lambda - 5). \]
The vector \( QR \) (from \( Q \) to \( R(1, 7, 6) \)) is given as:
\[ QR = (2\lambda - 7, -3\lambda, 4\lambda - 11). \]
Since \( QR \) is perpendicular to the line, the direction ratios \((-8, 12, -16)\) of the line satisfy:
\[ -8(2\lambda - 7) + 12(-3\lambda) + (-16)(4\lambda - 11) = 0. \]
Simplify:
\[ -16\lambda + 56 - 36\lambda - 64\lambda + 176 = 0. \]
Combine terms:
\[ 116\lambda = 232 \implies \lambda = 2. \]
Substitute \( \lambda = 2 \) in the parametric equation of the line:
\[ Q(2) = (2(2) - 6, 7 - 3(2), 4(2) - 5) = (-2, 1, 3). \]
The length of the segment \( PQ \) is:
\[ PQ = \sqrt{(10 - (-2))^2 + (-2 - 1)^2 + (-1 - 3)^2}. \]
Simplify:
\[ PQ = \sqrt{(12)^2 + (-3)^2 + (-4)^2} = \sqrt{144 + 9 + 16} = \sqrt{169}. \]
Thus: \[ PQ = 13. \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).