Let $P$ be a $3 \times 3$ matrix having characteristic roots $\lambda_1 = -\dfrac{2}{3}$, $\lambda_2 = 0$ and $\lambda_3 = 1$. Define $Q = 3P^3 - P^2 - P + I_3$ and $R = 3P^3 - 2P$. If $\alpha = \det(Q)$ and $\beta = \text{trace}(R)$, then $\alpha + \beta$ equals .......... (round off to two decimal places).
Step 1: Use eigenvalue properties.
If $\lambda_i$ are eigenvalues of $P$, then eigenvalues of $Q$ and $R$ are obtained by substituting into their defining expressions:
\[
\text{Eigenvalues of } Q: 3\lambda_i^3 - \lambda_i^2 - \lambda_i + 1.
\]
\[
\text{Eigenvalues of } R: 3\lambda_i^3 - 2\lambda_i.
\]
Step 2: Compute eigenvalues for each $\lambda_i$.
For $\lambda_1 = -\frac{2}{3}$:
\[
Q_1 = 3\left(-\frac{2}{3}\right)^3 - \left(-\frac{2}{3}\right)^2 - \left(-\frac{2}{3}\right) + 1 = -\frac{8}{9} - \frac{4}{9} + \frac{2}{3} + 1 = \frac{7}{9}.
\]
For $\lambda_2 = 0$: $Q_2 = 1$.
For $\lambda_3 = 1$: $Q_3 = 3 - 1 - 1 + 1 = 2$.
Hence,
\[
\alpha = \det(Q) = Q_1 Q_2 Q_3 = \frac{7}{9} \times 1 \times 2 = \frac{14}{9} \approx 1.56.
\]
Step 3: Find trace of $R$.
For $\lambda_1 = -\frac{2}{3}$: $R_1 = 3\left(-\frac{2}{3}\right)^3 - 2\left(-\frac{2}{3}\right) = -\frac{8}{9} + \frac{4}{3} = \frac{4}{9}.$
For $\lambda_2 = 0$: $R_2 = 0$.
For $\lambda_3 = 1$: $R_3 = 3(1)^3 - 2(1) = 1.$
\[
\beta = \text{trace}(R) = R_1 + R_2 + R_3 = \frac{4}{9} + 0 + 1 = \frac{13}{9} \approx 1.44.
\]
\[
\alpha + \beta = 1.56 + 1.44 = 3.00.
\]
Final Answer: \[ \boxed{\alpha + \beta = 3.00.} \]
The eigenvalues of the matrix

are \( \lambda_1, \lambda_2, \lambda_3 \). The value of \( \lambda_1 \lambda_2 \lambda_3 ( \lambda_1 + \lambda_2 + \lambda_3 ) \) is:
Let \[ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & k & 0 \\ 3 & 0 & -1 \end{pmatrix}. \] If the eigenvalues of \( A \) are -2, 1, and 2, then the value of \( k \) is _.
(Answer in integer)