Question:

Let P be a 3×3 real matrix having eigenvalues \(\lambda_1\) = 0, \(\lambda_2\) = 1 and \(\lambda_3\) = −1. Further, \(v_1=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\)\(v_2=\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\) and \(v_3=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}\) are eigenvectors of the matrix P corresponding to the eigenvalues \(\lambda_1\)\(\lambda_2\) and \(\lambda_3\), respectively. Then the entry in the first row and the third column of P is

Updated On: Oct 1, 2024
  • 0
  • 1
  • -1
  • 2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The correct option is (C): -1
Was this answer helpful?
0
0

Top Questions on Integral Calculus

View More Questions