We are given:
\[ \vec{p} = 2\hat{i} + \hat{j} + 3\hat{k}, \quad \vec{q} = \hat{i} - \hat{j} + \hat{k} \]
First, compute:
\[ 2\vec{p} + \vec{q} = 2(2\hat{i} + \hat{j} + 3\hat{k}) + (\hat{i} - \hat{j} + \hat{k}) \]
Simplify:
\[ 2\vec{p} + \vec{q} = 4\hat{i} + 2\hat{j} + 6\hat{k} + \hat{i} - \hat{j} + \hat{k} = 5\hat{i} + \hat{j} + 7\hat{k} \]
Next, compute:
\[ \vec{p} - 2\vec{q} = (2\hat{i} + \hat{j} + 3\hat{k}) - 2(\hat{i} - \hat{j} + \hat{k}) \]
Simplify:
\[ \vec{p} - 2\vec{q} = 2\hat{i} + \hat{j} + 3\hat{k} - 2\hat{i} + 2\hat{j} - 2\hat{k} = \hat{j} + \hat{k} \]
Using the determinant formula for the cross product:
\[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & 1 \end{vmatrix} \]
Expanding the determinant:
\[ \vec{p} \times \vec{q} = \hat{i} \begin{vmatrix} 1 & 3 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} \]
Simplify:
\[ \vec{p} \times \vec{q} = \hat{i}(1 \cdot 1 - (-1 \cdot 3)) - \hat{j}(2 \cdot 1 - 3 \cdot 1) + \hat{k}(2 \cdot (-1) - 1 \cdot 1) \] \[ \vec{p} \times \vec{q} = \hat{i}(1 + 3) - \hat{j}(2 - 3) + \hat{k}(-2 - 1) \] \[ \vec{p} \times \vec{q} = 4\hat{i} + \hat{j} - 3\hat{k} \]
We now solve for \(\alpha\), \(\beta\), and \(\gamma\) such that:
\[ \alpha(5\hat{i} + \hat{j} + 7\hat{k}) + \beta(\hat{j} + \hat{k}) + \gamma(4\hat{i} + \hat{j} - 3\hat{k}) = 15\hat{i} + 10\hat{j} + 6\hat{k} \]
- For \(\hat{i}\): \[ 5\alpha + 4\gamma = 15 \] - For \(\hat{j}\): \[ \alpha + \beta + \gamma = 10 \] - For \(\hat{k}\): \[ 7\alpha + \beta - 3\gamma = 6 \]
From the first equation:
\[ \alpha = \frac{15 - 4\gamma}{5} \]
Substitute \(\alpha\) into the other two equations and solve:
\[ \beta = \frac{11}{5}, \quad \gamma = 2, \quad \alpha = \frac{7}{5} \]
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |