To find \(\gamma\), express the given vector in terms of \(\vec{p}\), \(\vec{q}\), and their cross product, then solve for the coefficients.
Given:
\[
\vec{p} = 2\hat{i} + \hat{j} + 3\hat{k}, \quad \vec{q} = \hat{i} - \hat{j} + \hat{k}
\]
\[
\vec{v} = 15\hat{i} + 10\hat{j} + 6\hat{k} = \alpha (2\vec{p} + \vec{q}) + \beta (\vec{p} - 2\vec{q}) + \gamma (\vec{p} \times \vec{q})
\]
Step 1: Calculate \(2\vec{p} + \vec{q}\) and \(\vec{p} - 2\vec{q}\)
\[
2\vec{p} = 4\hat{i} + 2\hat{j} + 6\hat{k}
\]
\[
2\vec{p} + \vec{q} = (4+1)\hat{i} + (2 - 1)\hat{j} + (6 + 1)\hat{k} = 5\hat{i} + \hat{j} + 7\hat{k}
\]
\[
2\vec{q} = 2\hat{i} - 2\hat{j} + 2\hat{k}
\]
\[
\vec{p} - 2\vec{q} = (2 - 2)\hat{i} + (1 + 2)\hat{j} + (3 - 2)\hat{k} = 0\hat{i} + 3\hat{j} + 1\hat{k}
\]
Step 2: Calculate \(\vec{p} \times \vec{q}\)
\[
\vec{p} \times \vec{q} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 3 \\
1 & -1 & 1
\end{vmatrix}
= \hat{i} (1 \times 1 - 3 \times (-1)) - \hat{j} (2 \times 1 - 3 \times 1) + \hat{k} (2 \times (-1) - 1 \times 1)
\]
\[
= \hat{i} (1 + 3) - \hat{j} (2 - 3) + \hat{k} (-2 - 1) = 4 \hat{i} + 1 \hat{j} - 3 \hat{k}
\]
Step 3: Write the equation for \(\vec{v}\) components:
\[
\vec{v} = \alpha (5\hat{i} + \hat{j} + 7\hat{k}) + \beta (0\hat{i} + 3\hat{j} + \hat{k}) + \gamma (4\hat{i} + \hat{j} - 3\hat{k})
\]
\[
= (5\alpha + 0\beta + 4\gamma) \hat{i} + (\alpha + 3\beta + \gamma) \hat{j} + (7\alpha + \beta - 3\gamma) \hat{k}
\]
Set equal to \(\vec{v} = 15\hat{i} + 10\hat{j} + 6\hat{k}\):
\[
5\alpha + 4\gamma = 15 \quad (1)
\]
\[
\alpha + 3\beta + \gamma = 10 \quad (2)
\]
\[
7\alpha + \beta - 3\gamma = 6 \quad (3)
\]
Step 4: Solve equations (1), (2), and (3)
From (1):
\[
5\alpha = 15 - 4\gamma \implies \alpha = \frac{15 - 4\gamma}{5} = 3 - \frac{4}{5} \gamma
\]
Substitute \(\alpha\) into (2):
\[
3 - \frac{4}{5} \gamma + 3\beta + \gamma = 10
\]
\[
3\beta + \left(3 - \frac{4}{5}\gamma + \gamma \right) = 10
\]
\[
3\beta + 3 + \frac{1}{5} \gamma = 10
\]
\[
3\beta = 7 - \frac{1}{5} \gamma
\]
\[
\beta = \frac{7}{3} - \frac{\gamma}{15}
\]
Substitute \(\alpha\) and \(\beta\) into (3):
\[
7\left(3 - \frac{4}{5} \gamma \right) + \left( \frac{7}{3} - \frac{\gamma}{15} \right) - 3 \gamma = 6
\]
\[
21 - \frac{28}{5} \gamma + \frac{7}{3} - \frac{\gamma}{15} - 3 \gamma = 6
\]
Combine constants:
\[
21 + \frac{7}{3} = \frac{63}{3} + \frac{7}{3} = \frac{70}{3}
\]
Combine \(\gamma\) terms (common denominator 15):
\[
- \frac{28}{5} \gamma - \frac{\gamma}{15} - 3 \gamma = - \frac{84}{15} \gamma - \frac{1}{15} \gamma - \frac{45}{15} \gamma = - \frac{130}{15} \gamma = - \frac{26}{3} \gamma
\]
Equation becomes:
\[
\frac{70}{3} - \frac{26}{3} \gamma = 6
\]
Multiply both sides by 3:
\[
70 - 26 \gamma = 18
\]
\[
70 - 18 = 26 \gamma
\]
\[
52 = 26 \gamma
\]
\[
\gamma = 2
\]
Final Answer:
\[
\boxed{2}
\]
Vector Operations
We are given:
\[ \vec{p} = 2\hat{i} + \hat{j} + 3\hat{k}, \quad \vec{q} = \hat{i} - \hat{j} + \hat{k} \]
First, compute:
\[ 2\vec{p} + \vec{q} = 2(2\hat{i} + \hat{j} + 3\hat{k}) + (\hat{i} - \hat{j} + \hat{k}) \]
Simplify:
\[ 2\vec{p} + \vec{q} = 4\hat{i} + 2\hat{j} + 6\hat{k} + \hat{i} - \hat{j} + \hat{k} = 5\hat{i} + \hat{j} + 7\hat{k} \]
Next, compute:
\[ \vec{p} - 2\vec{q} = (2\hat{i} + \hat{j} + 3\hat{k}) - 2(\hat{i} - \hat{j} + \hat{k}) \]
Simplify:
\[ \vec{p} - 2\vec{q} = 2\hat{i} + \hat{j} + 3\hat{k} - 2\hat{i} + 2\hat{j} - 2\hat{k} = \hat{j} + \hat{k} \]
Using the determinant formula for the cross product:
\[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & 1 \end{vmatrix} \]
Expanding the determinant:
\[ \vec{p} \times \vec{q} = \hat{i} \begin{vmatrix} 1 & 3 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} \]
Simplify:
\[ \vec{p} \times \vec{q} = \hat{i}(1 \cdot 1 - (-1 \cdot 3)) - \hat{j}(2 \cdot 1 - 3 \cdot 1) + \hat{k}(2 \cdot (-1) - 1 \cdot 1) \] \[ \vec{p} \times \vec{q} = \hat{i}(1 + 3) - \hat{j}(2 - 3) + \hat{k}(-2 - 1) \] \[ \vec{p} \times \vec{q} = 4\hat{i} + \hat{j} - 3\hat{k} \]
We now solve for \(\alpha\), \(\beta\), and \(\gamma\) such that:
\[ \alpha(5\hat{i} + \hat{j} + 7\hat{k}) + \beta(\hat{j} + \hat{k}) + \gamma(4\hat{i} + \hat{j} - 3\hat{k}) = 15\hat{i} + 10\hat{j} + 6\hat{k} \]
- For \(\hat{i}\): \[ 5\alpha + 4\gamma = 15 \] - For \(\hat{j}\): \[ \alpha + \beta + \gamma = 10 \] - For \(\hat{k}\): \[ 7\alpha + \beta - 3\gamma = 6 \]
From the first equation:
\[ \alpha = \frac{15 - 4\gamma}{5} \]
Substitute \(\alpha\) into the other two equations and solve:
\[ \beta = \frac{11}{5}, \quad \gamma = 2, \quad \alpha = \frac{7}{5} \]