Question:

Let \(\vec{p}=2\hat{i}+\hat{j}+3\hat{k}\) and \(\vec{q}=\hat{i}-\hat{j}+\hat{k}\). If for some real numbers α, β and γ we have
\(15\hat{i}+10\hat{j}+6\hat{k}=α(2\vec{p}+\vec{q})+β(\vec{p}-2\vec{q})+γ(\vec{p}\times\vec{q})\),
then the value of γ is ________.

Updated On: Mar 8, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 2

Solution and Explanation

Vector Operations 

We are given:

\[ \vec{p} = 2\hat{i} + \hat{j} + 3\hat{k}, \quad \vec{q} = \hat{i} - \hat{j} + \hat{k} \]

Step 1: Calculate Linear Combinations of Vectors

First, compute:

\[ 2\vec{p} + \vec{q} = 2(2\hat{i} + \hat{j} + 3\hat{k}) + (\hat{i} - \hat{j} + \hat{k}) \]

Simplify:

\[ 2\vec{p} + \vec{q} = 4\hat{i} + 2\hat{j} + 6\hat{k} + \hat{i} - \hat{j} + \hat{k} = 5\hat{i} + \hat{j} + 7\hat{k} \]

Next, compute:

\[ \vec{p} - 2\vec{q} = (2\hat{i} + \hat{j} + 3\hat{k}) - 2(\hat{i} - \hat{j} + \hat{k}) \]

Simplify:

\[ \vec{p} - 2\vec{q} = 2\hat{i} + \hat{j} + 3\hat{k} - 2\hat{i} + 2\hat{j} - 2\hat{k} = \hat{j} + \hat{k} \]

Step 2: Compute the Cross Product \(\vec{p} \times \vec{q}\)

Using the determinant formula for the cross product:

\[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & 1 \end{vmatrix} \]

Expanding the determinant:

\[ \vec{p} \times \vec{q} = \hat{i} \begin{vmatrix} 1 & 3 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} \]

Simplify:

\[ \vec{p} \times \vec{q} = \hat{i}(1 \cdot 1 - (-1 \cdot 3)) - \hat{j}(2 \cdot 1 - 3 \cdot 1) + \hat{k}(2 \cdot (-1) - 1 \cdot 1) \] \[ \vec{p} \times \vec{q} = \hat{i}(1 + 3) - \hat{j}(2 - 3) + \hat{k}(-2 - 1) \] \[ \vec{p} \times \vec{q} = 4\hat{i} + \hat{j} - 3\hat{k} \]

Step 3: Form and Solve the Equation

We now solve for \(\alpha\), \(\beta\), and \(\gamma\) such that:

\[ \alpha(5\hat{i} + \hat{j} + 7\hat{k}) + \beta(\hat{j} + \hat{k}) + \gamma(4\hat{i} + \hat{j} - 3\hat{k}) = 15\hat{i} + 10\hat{j} + 6\hat{k} \]

Equating Components:

- For \(\hat{i}\): \[ 5\alpha + 4\gamma = 15 \] - For \(\hat{j}\): \[ \alpha + \beta + \gamma = 10 \] - For \(\hat{k}\): \[ 7\alpha + \beta - 3\gamma = 6 \]

Step 4: Solve the System of Equations

From the first equation:

\[ \alpha = \frac{15 - 4\gamma}{5} \]

Substitute \(\alpha\) into the other two equations and solve:

\[ \beta = \frac{11}{5}, \quad \gamma = 2, \quad \alpha = \frac{7}{5} \]

Final Answer:

  • \(\alpha = \frac{7}{5}, \beta = \frac{11}{5}, \gamma = 2\)
Was this answer helpful?
0
6

Top Questions on Vector Algebra

View More Questions

Questions Asked in JEE Advanced exam

View More Questions