The magnetic moment is given by: \[ \mu = \sqrt{n(n+2)} \, \text{B.M.} \] Where \( n \) is the number of unpaired electrons. For \( \text{Sc}^{2+} \) (3d\(^1\)), \( \mu = 1 \, \text{B.M.} \). For \( \text{Ti}^{2+} \) (3d\(^2\)), \( \mu = \sqrt{2(2+2)} = \sqrt{8} = 2.83 \, \text{B.M.} \).
For \( \text{Mn}^{2+} \) (3d\(^5\)), \( \mu = \sqrt{5(5+2)} = \sqrt{35} = 5.92 \, \text{B.M.} \). For \( \text{Co}^{2+} \) (3d\(^7\)), \( \mu = \sqrt{7(7+2)} = \sqrt{63} = 7.94 \, \text{B.M.} \).
Thus, the highest magnetic moment is for \( \text{Mn}^{2+} \), which has \( 5.9 \, \text{B.M.} \).
(b) If \( \vec{L} \) is the angular momentum of the electron, show that:
\[ \vec{\mu} = -\frac{e}{2m} \vec{L} \]
The sum of the spin-only magnetic moment values (in B.M.) of $[\text{Mn}(\text{Br})_6]^{3-}$ and $[\text{Mn}(\text{CN})_6]^{3-}$ is ____.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: