The magnetic moment is given by: \[ \mu = \sqrt{n(n+2)} \, \text{B.M.} \] Where \( n \) is the number of unpaired electrons. For \( \text{Sc}^{2+} \) (3d\(^1\)), \( \mu = 1 \, \text{B.M.} \). For \( \text{Ti}^{2+} \) (3d\(^2\)), \( \mu = \sqrt{2(2+2)} = \sqrt{8} = 2.83 \, \text{B.M.} \).
For \( \text{Mn}^{2+} \) (3d\(^5\)), \( \mu = \sqrt{5(5+2)} = \sqrt{35} = 5.92 \, \text{B.M.} \). For \( \text{Co}^{2+} \) (3d\(^7\)), \( \mu = \sqrt{7(7+2)} = \sqrt{63} = 7.94 \, \text{B.M.} \).
Thus, the highest magnetic moment is for \( \text{Mn}^{2+} \), which has \( 5.9 \, \text{B.M.} \).
(b) If \( \vec{L} \) is the angular momentum of the electron, show that:
\[ \vec{\mu} = -\frac{e}{2m} \vec{L} \]
The sum of the spin-only magnetic moment values (in B.M.) of $[\text{Mn}(\text{Br})_6]^{3-}$ and $[\text{Mn}(\text{CN})_6]^{3-}$ is ____.