Vector Expressions
Given vectors:
Cross Product \( \overrightarrow{OP} \times \overrightarrow{OQ} \)
Computing the determinant:
\[ \overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} i & j & k \\ \frac{\alpha - 1}{\alpha} & 1 & 1 \\ 1 & \frac{\beta - 1}{\beta} & 1 \end{vmatrix} \]
Expanding along the first row:
\[ \overrightarrow{OP} \times \overrightarrow{OQ} = i \left( 1 - \frac{\beta - 1}{\beta} \right) - j \left( \frac{\alpha - 1}{\alpha} - 1 \right) + k \left( \frac{\alpha - 1}{\alpha} \cdot \frac{\beta - 1}{\beta} - 1 \right) \]
Dot Product with \( \overrightarrow{OR} \)
\[ (\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = 0 \]
Solving for \( \alpha, \beta \).
Substituting \( (\alpha, \beta, 2) \) into the Plane Equation
\[ 3\alpha + 3\beta - 2 + l = 0 \]
Solving for \( l \):
\[ l = 5 \]
Final Answer: 5
To solve the problem, analyze the given vectors and conditions.
Given:
\[
\overrightarrow{OP} = \frac{\alpha - 1}{\alpha} \hat{i} + \hat{j} + \hat{k}
\]
\[
\overrightarrow{OQ} = \hat{i} + \frac{\beta - 1}{\beta} \hat{j} + \hat{k}
\]
\[
\overrightarrow{OR} = \hat{i} + \hat{j} + \frac{1}{2} \hat{k}
\]
with \(\alpha, \beta \in \mathbb{R} \setminus \{0\}\), and
\[
(\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = 0
\]
Point \((\alpha, \beta, 2)\) lies on plane
\[
3x + 3y - z + l = 0
\]
Find \(l\).
Step 1: Compute \(\overrightarrow{OP} \times \overrightarrow{OQ}\):
\[ \overrightarrow{OP} = \left( \frac{\alpha - 1}{\alpha}, 1, 1 \right), \quad \overrightarrow{OQ} = (1, \frac{\beta - 1}{\beta}, 1) \] Calculate cross product: \[ \overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\alpha - 1}{\alpha} & 1 & 1 \\ 1 & \frac{\beta - 1}{\beta} & 1 \end{vmatrix} \] Calculate each component: \[ \hat{i}: (1)(1) - (1)\left(\frac{\beta - 1}{\beta}\right) = 1 - \frac{\beta - 1}{\beta} = \frac{\beta - (\beta - 1)}{\beta} = \frac{1}{\beta} \] \[ \hat{j}: -\left( \frac{\alpha - 1}{\alpha} \cdot 1 - 1 \cdot 1 \right) = -\left( \frac{\alpha - 1}{\alpha} - 1 \right) = -\left( \frac{\alpha - 1 - \alpha}{\alpha} \right) = -\left( \frac{-1}{\alpha} \right) = \frac{1}{\alpha} \] \[ \hat{k}: \frac{\alpha - 1}{\alpha} \cdot \frac{\beta - 1}{\beta} - 1 \cdot 1 = \frac{(\alpha - 1)(\beta - 1)}{\alpha \beta} - 1 \] So, \[ \overrightarrow{OP} \times \overrightarrow{OQ} = \left( \frac{1}{\beta}, \frac{1}{\alpha}, \frac{(\alpha - 1)(\beta - 1)}{\alpha \beta} - 1 \right) \]Step 2: Compute the dot product with \(\overrightarrow{OR}\):
\[
(\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = \frac{1}{\beta} \times 1 + \frac{1}{\alpha} \times 1 + \left( \frac{(\alpha - 1)(\beta - 1)}{\alpha \beta} - 1 \right) \times \frac{1}{2} = 0
\]
Multiply both sides by \(2 \alpha \beta\) (non-zero since \(\alpha, \beta \neq 0\)) to clear denominators:
\[
2 \alpha + 2 \beta + \alpha \beta \left( (\alpha - 1)(\beta - 1)/(\alpha \beta) - 1 \right) = 0
\]
Simplify the term inside the parenthesis:
\[
(\alpha - 1)(\beta - 1)/(\alpha \beta) - 1 = \frac{(\alpha - 1)(\beta - 1) - \alpha \beta}{\alpha \beta}
\]
Multiply by \(\alpha \beta\):
\[
(\alpha - 1)(\beta - 1) - \alpha \beta = \alpha \beta - \alpha - \beta + 1 - \alpha \beta = -\alpha - \beta + 1
\]
Therefore, the equation becomes:
\[
2 \alpha + 2 \beta + (-\alpha - \beta + 1) = 0
\]
\[
(2\alpha - \alpha) + (2\beta - \beta) + 1 = 0
\]
\[
\alpha + \beta + 1 = 0
\]
\[
\alpha + \beta = -1
\]
Step 3: Use the plane equation:
Given point \((\alpha, \beta, 2)\) lies on plane:
\[
3 \alpha + 3 \beta - 2 + l = 0 \implies 3 (\alpha + \beta) + l = 2
\]
Substitute \(\alpha + \beta = -1\):
\[
3 \times (-1) + l = 2 \implies -3 + l = 2 \implies l = 5
\]
Final Answer:
\[
\boxed{5}
\]
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____