Vector Expressions
Given vectors:
Cross Product \( \overrightarrow{OP} \times \overrightarrow{OQ} \)
Computing the determinant:
\[ \overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} i & j & k \\ \frac{\alpha - 1}{\alpha} & 1 & 1 \\ 1 & \frac{\beta - 1}{\beta} & 1 \end{vmatrix} \]
Expanding along the first row:
\[ \overrightarrow{OP} \times \overrightarrow{OQ} = i \left( 1 - \frac{\beta - 1}{\beta} \right) - j \left( \frac{\alpha - 1}{\alpha} - 1 \right) + k \left( \frac{\alpha - 1}{\alpha} \cdot \frac{\beta - 1}{\beta} - 1 \right) \]
Dot Product with \( \overrightarrow{OR} \)
\[ (\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = 0 \]
Solving for \( \alpha, \beta \).
Substituting \( (\alpha, \beta, 2) \) into the Plane Equation
\[ 3\alpha + 3\beta - 2 + l = 0 \]
Solving for \( l \):
\[ l = 5 \]
Final Answer: 5
To solve the problem, analyze the given vectors and conditions.
Given:
\[
\overrightarrow{OP} = \frac{\alpha - 1}{\alpha} \hat{i} + \hat{j} + \hat{k}
\]
\[
\overrightarrow{OQ} = \hat{i} + \frac{\beta - 1}{\beta} \hat{j} + \hat{k}
\]
\[
\overrightarrow{OR} = \hat{i} + \hat{j} + \frac{1}{2} \hat{k}
\]
with \(\alpha, \beta \in \mathbb{R} \setminus \{0\}\), and
\[
(\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = 0
\]
Point \((\alpha, \beta, 2)\) lies on plane
\[
3x + 3y - z + l = 0
\]
Find \(l\).
Step 1: Compute \(\overrightarrow{OP} \times \overrightarrow{OQ}\):
\[ \overrightarrow{OP} = \left( \frac{\alpha - 1}{\alpha}, 1, 1 \right), \quad \overrightarrow{OQ} = (1, \frac{\beta - 1}{\beta}, 1) \] Calculate cross product: \[ \overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\alpha - 1}{\alpha} & 1 & 1 \\ 1 & \frac{\beta - 1}{\beta} & 1 \end{vmatrix} \] Calculate each component: \[ \hat{i}: (1)(1) - (1)\left(\frac{\beta - 1}{\beta}\right) = 1 - \frac{\beta - 1}{\beta} = \frac{\beta - (\beta - 1)}{\beta} = \frac{1}{\beta} \] \[ \hat{j}: -\left( \frac{\alpha - 1}{\alpha} \cdot 1 - 1 \cdot 1 \right) = -\left( \frac{\alpha - 1}{\alpha} - 1 \right) = -\left( \frac{\alpha - 1 - \alpha}{\alpha} \right) = -\left( \frac{-1}{\alpha} \right) = \frac{1}{\alpha} \] \[ \hat{k}: \frac{\alpha - 1}{\alpha} \cdot \frac{\beta - 1}{\beta} - 1 \cdot 1 = \frac{(\alpha - 1)(\beta - 1)}{\alpha \beta} - 1 \] So, \[ \overrightarrow{OP} \times \overrightarrow{OQ} = \left( \frac{1}{\beta}, \frac{1}{\alpha}, \frac{(\alpha - 1)(\beta - 1)}{\alpha \beta} - 1 \right) \]Step 2: Compute the dot product with \(\overrightarrow{OR}\):
\[
(\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = \frac{1}{\beta} \times 1 + \frac{1}{\alpha} \times 1 + \left( \frac{(\alpha - 1)(\beta - 1)}{\alpha \beta} - 1 \right) \times \frac{1}{2} = 0
\]
Multiply both sides by \(2 \alpha \beta\) (non-zero since \(\alpha, \beta \neq 0\)) to clear denominators:
\[
2 \alpha + 2 \beta + \alpha \beta \left( (\alpha - 1)(\beta - 1)/(\alpha \beta) - 1 \right) = 0
\]
Simplify the term inside the parenthesis:
\[
(\alpha - 1)(\beta - 1)/(\alpha \beta) - 1 = \frac{(\alpha - 1)(\beta - 1) - \alpha \beta}{\alpha \beta}
\]
Multiply by \(\alpha \beta\):
\[
(\alpha - 1)(\beta - 1) - \alpha \beta = \alpha \beta - \alpha - \beta + 1 - \alpha \beta = -\alpha - \beta + 1
\]
Therefore, the equation becomes:
\[
2 \alpha + 2 \beta + (-\alpha - \beta + 1) = 0
\]
\[
(2\alpha - \alpha) + (2\beta - \beta) + 1 = 0
\]
\[
\alpha + \beta + 1 = 0
\]
\[
\alpha + \beta = -1
\]
Step 3: Use the plane equation:
Given point \((\alpha, \beta, 2)\) lies on plane:
\[
3 \alpha + 3 \beta - 2 + l = 0 \implies 3 (\alpha + \beta) + l = 2
\]
Substitute \(\alpha + \beta = -1\):
\[
3 \times (-1) + l = 2 \implies -3 + l = 2 \implies l = 5
\]
Final Answer:
\[
\boxed{5}
\]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 