Question:

Let \(\overrightarrow{OP}=\frac{\alpha-1}{\alpha}\hat{i}+\hat{j}+\hat{k},\overrightarrow{OQ}=\hat{i}+\frac{\beta-1}{\beta}\hat{j}+\hat{k}\) and \(\overrightarrow{OR}=\hat{i}+\hat{j}+\frac{1}{2}\hat{k}\) be three vector where α, β ∈ R - {0} and 0 denotes the origin. If \((\overrightarrow{OP}\times\overrightarrow{OQ}).\overrightarrow{OR}=0\) and the point (α, β, 2) lies on the plane 3x + 3y - z + l = 0, then the value of l is _______.

Updated On: Mar 7, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 5

Solution and Explanation

Vector Expressions 

Given vectors:

  • \(\overrightarrow{OP} = \left( \frac{\alpha - 1}{\alpha} \right) i + j + k\)
  • \(\overrightarrow{OQ} = i + \left( \frac{\beta - 1}{\beta} \right) j + k\)
  • \(\overrightarrow{OR} = i + j + \frac{1}{2} k\)

Cross Product \( \overrightarrow{OP} \times \overrightarrow{OQ} \)

Computing the determinant:

\[ \overrightarrow{OP} \times \overrightarrow{OQ} = \begin{vmatrix} i & j & k \\ \frac{\alpha - 1}{\alpha} & 1 & 1 \\ 1 & \frac{\beta - 1}{\beta} & 1 \end{vmatrix} \]

Expanding along the first row:

\[ \overrightarrow{OP} \times \overrightarrow{OQ} = i \left( 1 - \frac{\beta - 1}{\beta} \right) - j \left( \frac{\alpha - 1}{\alpha} - 1 \right) + k \left( \frac{\alpha - 1}{\alpha} \cdot \frac{\beta - 1}{\beta} - 1 \right) \]

Dot Product with \( \overrightarrow{OR} \)

\[ (\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = 0 \]

Solving for \( \alpha, \beta \).

Substituting \( (\alpha, \beta, 2) \) into the Plane Equation

\[ 3\alpha + 3\beta - 2 + l = 0 \]

Solving for \( l \):

\[ l = 5 \]

Final Answer: 5

Was this answer helpful?
3
2

Top Questions on Vector Algebra

View More Questions

Questions Asked in JEE Advanced exam

View More Questions