Question:

Let $O$ be the vertex and $Q$ be any point on the parabola, $x^2$ = 8y. If the point $P$ divides the line segment $OQ$ internally in the ratio $1 : 3$, then the locus of $P$ is

Updated On: June 02, 2025
  • $x^{2}=y$
  • $y^{2}=x$
  • $y^{2}=2x$
  • $x^{2}=2y$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation



Let $P:(h, k)$
$h=\frac{1 . \alpha+\beta .0}{4} $
$\Rightarrow \alpha=4 h$
$k=\frac{1 . \beta+3.0}{4} $
$\Rightarrow \beta=4 k$
$\because(\alpha, \beta)$ on Parabola
$\Rightarrow \alpha^{2}=8 \beta $
$\Rightarrow\left(4 h^{2}\right)=8.4 k$
$16 h^{2}=32 k$
$x^{2}=2 y$
Was this answer helpful?
0
0

JEE Main Notification