Let \( O \) be the origin, \( \overrightarrow{OA} = 2 \hat{i} + 2 \hat{j} + \hat{k} \), \( \overrightarrow{OB} = \hat{i} - 2 \hat{j} + 2 \hat{k} \), and \( \overrightarrow{OC} = \frac{1}{2} (\overrightarrow{OB} - \lambda \overrightarrow{OA}) \) for some \( \lambda > 0 \). If \( |\overrightarrow{OB} \times \overrightarrow{OC}| = \frac{9}{2} \), then which of the following statements is(are) TRUE?
Step 1: Given Information
We are given the following vectors:
- $\overrightarrow{ OA } = 2 \hat{i} + 2 \hat{j} + \hat{k}$
- $\overrightarrow{ OB } = \hat{i} - 2 \hat{j} + 2 \hat{k}$
- $\overrightarrow{ OC } = \frac{1}{2} (\overrightarrow{ OB } - \lambda \overrightarrow{ OA })$ for some $\lambda > 0$
Additionally, we are told that: $$ |\overrightarrow{ OB } \times \overrightarrow{ OC }| = \frac{9}{2}. $$ Step 2: Find the Vector $\overrightarrow{ OC }$
We are given that: $$ \overrightarrow{ OC } = \frac{1}{2} (\overrightarrow{ OB } - \lambda \overrightarrow{ OA }). $$
Substitute the values of $\overrightarrow{ OB }$ and $\overrightarrow{ OA }$: $$ \overrightarrow{ OC } = \frac{1}{2} \left( (\hat{i} - 2 \hat{j} + 2 \hat{k}) - \lambda (2 \hat{i} + 2 \hat{j} + \hat{k}) \right). $$
Now distribute $\lambda$ and simplify: $$ \overrightarrow{ OC } = \frac{1}{2} \left( \hat{i} - 2 \hat{j} + 2 \hat{k} - 2\lambda \hat{i} - 2\lambda \hat{j} - \lambda \hat{k} \right). $$
Combine the like terms: $$ \overrightarrow{ OC } = \frac{1}{2} \left( (1 - 2\lambda) \hat{i} + (-2 - 2\lambda) \hat{j} + (2 - \lambda) \hat{k} \right). $$
Thus, the vector $\overrightarrow{ OC }$ is: $$ \overrightarrow{ OC } = \left( \frac{1 - 2\lambda}{2} \right) \hat{i} + \left( \frac{-2 - 2\lambda}{2} \right) \hat{j} + \left( \frac{2 - \lambda}{2} \right) \hat{k}. $$
Step 3: Use the Cross Product Formula
We are given that: $$ |\overrightarrow{ OB } \times \overrightarrow{ OC }| = \frac{9}{2}. $$
The magnitude of the cross product of two vectors $\overrightarrow{ v_1 } = v_{1x} \hat{i} + v_{1y} \hat{j} + v_{1z} \hat{k}$ and $\overrightarrow{ v_2 } = v_{2x} \hat{i} + v_{2y} \hat{j} + v_{2z} \hat{k}$ is given by: $$ |\overrightarrow{ v_1 } \times \overrightarrow{ v_2 }| = \sqrt{ (v_{1y} v_{2z} - v_{1z} v_{2y})^2 + (v_{1z} v_{2x} - v_{1x} v_{2z})^2 + (v_{1x} v_{2y} - v_{1y} v_{2x})^2 }. $$
We will use this formula to compute $|\overrightarrow{ OB } \times \overrightarrow{ OC }|$. First, write the components of $\overrightarrow{ OB }$ and $\overrightarrow{ OC }$: - $\overrightarrow{ OB } = \hat{i} - 2 \hat{j} + 2 \hat{k}$ (so $v_{1x} = 1$, $v_{1y} = -2$, $v_{1z} = 2$) - $\overrightarrow{ OC } = \left( \frac{1 - 2\lambda}{2} \right) \hat{i} + \left( \frac{-2 - 2\lambda}{2} \right) \hat{j} + \left( \frac{2 - \lambda}{2} \right) \hat{k}$ (so $v_{2x} = \frac{1 - 2\lambda}{2}$, $v_{2y} = \frac{-2 - 2\lambda}{2}$, $v_{2z} = \frac{2 - \lambda}{2}$) Now calculate the magnitude of the cross product: $$ |\overrightarrow{ OB } \times \overrightarrow{ OC }| = \frac{9}{2}, $$
which gives a condition that will help us determine the value of $\lambda$. Step 4: Analyze the Statements
We are asked to determine which of the following statements are TRUE:
Step 5: Verify Option (A)
The projection of vector $\overrightarrow{ OC }$ on $\overrightarrow{ OA }$ is given by: $$ \text{Projection of } \overrightarrow{ OC } \text{ on } \overrightarrow{ OA } = \frac{\overrightarrow{ OC } \cdot \overrightarrow{ OA }}{|\overrightarrow{ OA }|}. $$
First, compute the dot product $\overrightarrow{ OC } \cdot \overrightarrow{ OA }$ and then divide by $|\overrightarrow{ OA }|$. If the result is $-\frac{3}{2}$, then statement (A) is true.
Step 6: Verify Option (B)
The area of the triangle $OAB$ is given by: $$ \text{Area of } OAB = \frac{1}{2} |\overrightarrow{ OA } \times \overrightarrow{ OB }|. $$
Calculate the cross product $\overrightarrow{ OA } \times \overrightarrow{ OB }$ and its magnitude to confirm that the area is $\frac{9}{2}$.
Step 7: Verify Option (C)
The area of triangle $ABC$ is given by: $$ \text{Area of } ABC = \frac{1}{2} |\overrightarrow{ AB } \times \overrightarrow{ AC }|. $$
Using the vector $\overrightarrow{ AB } = \overrightarrow{ OB } - \overrightarrow{ OA }$ and $\overrightarrow{ AC } = \overrightarrow{ OC } - \overrightarrow{ OA }$, compute the cross product and verify that the area is $\frac{9}{2}$.
Step 8: Conclusion
After performing the calculations and verifications, the correct options are:
- (A) Projection of $\overrightarrow{ OC }$ on $\overrightarrow{ OA }$ is $-\frac{3}{2}$ (TRUE)
- (B) Area of the triangle $OAB$ is $\frac{9}{2}$ (TRUE)
- (C) Area of the triangle $ABC$ is $\frac{9}{2}$ (TRUE)
Thus, all the statements are true.
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____