Let \( O \) be the origin, \( \overrightarrow{OA} = 2 \hat{i} + 2 \hat{j} + \hat{k} \), \( \overrightarrow{OB} = \hat{i} - 2 \hat{j} + 2 \hat{k} \), and \( \overrightarrow{OC} = \frac{1}{2} (\overrightarrow{OB} - \lambda \overrightarrow{OA}) \) for some \( \lambda > 0 \). If \( |\overrightarrow{OB} \times \overrightarrow{OC}| = \frac{9}{2} \), then which of the following statements is(are) TRUE?
Step 1: Given Information
We are given the following vectors:
- $\overrightarrow{ OA } = 2 \hat{i} + 2 \hat{j} + \hat{k}$
- $\overrightarrow{ OB } = \hat{i} - 2 \hat{j} + 2 \hat{k}$
- $\overrightarrow{ OC } = \frac{1}{2} (\overrightarrow{ OB } - \lambda \overrightarrow{ OA })$ for some $\lambda > 0$
Additionally, we are told that: $$ |\overrightarrow{ OB } \times \overrightarrow{ OC }| = \frac{9}{2}. $$ Step 2: Find the Vector $\overrightarrow{ OC }$
We are given that: $$ \overrightarrow{ OC } = \frac{1}{2} (\overrightarrow{ OB } - \lambda \overrightarrow{ OA }). $$
Substitute the values of $\overrightarrow{ OB }$ and $\overrightarrow{ OA }$: $$ \overrightarrow{ OC } = \frac{1}{2} \left( (\hat{i} - 2 \hat{j} + 2 \hat{k}) - \lambda (2 \hat{i} + 2 \hat{j} + \hat{k}) \right). $$
Now distribute $\lambda$ and simplify: $$ \overrightarrow{ OC } = \frac{1}{2} \left( \hat{i} - 2 \hat{j} + 2 \hat{k} - 2\lambda \hat{i} - 2\lambda \hat{j} - \lambda \hat{k} \right). $$
Combine the like terms: $$ \overrightarrow{ OC } = \frac{1}{2} \left( (1 - 2\lambda) \hat{i} + (-2 - 2\lambda) \hat{j} + (2 - \lambda) \hat{k} \right). $$
Thus, the vector $\overrightarrow{ OC }$ is: $$ \overrightarrow{ OC } = \left( \frac{1 - 2\lambda}{2} \right) \hat{i} + \left( \frac{-2 - 2\lambda}{2} \right) \hat{j} + \left( \frac{2 - \lambda}{2} \right) \hat{k}. $$
Step 3: Use the Cross Product Formula
We are given that: $$ |\overrightarrow{ OB } \times \overrightarrow{ OC }| = \frac{9}{2}. $$
The magnitude of the cross product of two vectors $\overrightarrow{ v_1 } = v_{1x} \hat{i} + v_{1y} \hat{j} + v_{1z} \hat{k}$ and $\overrightarrow{ v_2 } = v_{2x} \hat{i} + v_{2y} \hat{j} + v_{2z} \hat{k}$ is given by: $$ |\overrightarrow{ v_1 } \times \overrightarrow{ v_2 }| = \sqrt{ (v_{1y} v_{2z} - v_{1z} v_{2y})^2 + (v_{1z} v_{2x} - v_{1x} v_{2z})^2 + (v_{1x} v_{2y} - v_{1y} v_{2x})^2 }. $$
We will use this formula to compute $|\overrightarrow{ OB } \times \overrightarrow{ OC }|$. First, write the components of $\overrightarrow{ OB }$ and $\overrightarrow{ OC }$: - $\overrightarrow{ OB } = \hat{i} - 2 \hat{j} + 2 \hat{k}$ (so $v_{1x} = 1$, $v_{1y} = -2$, $v_{1z} = 2$) - $\overrightarrow{ OC } = \left( \frac{1 - 2\lambda}{2} \right) \hat{i} + \left( \frac{-2 - 2\lambda}{2} \right) \hat{j} + \left( \frac{2 - \lambda}{2} \right) \hat{k}$ (so $v_{2x} = \frac{1 - 2\lambda}{2}$, $v_{2y} = \frac{-2 - 2\lambda}{2}$, $v_{2z} = \frac{2 - \lambda}{2}$) Now calculate the magnitude of the cross product: $$ |\overrightarrow{ OB } \times \overrightarrow{ OC }| = \frac{9}{2}, $$
which gives a condition that will help us determine the value of $\lambda$. Step 4: Analyze the Statements
We are asked to determine which of the following statements are TRUE:
Step 5: Verify Option (A)
The projection of vector $\overrightarrow{ OC }$ on $\overrightarrow{ OA }$ is given by: $$ \text{Projection of } \overrightarrow{ OC } \text{ on } \overrightarrow{ OA } = \frac{\overrightarrow{ OC } \cdot \overrightarrow{ OA }}{|\overrightarrow{ OA }|}. $$
First, compute the dot product $\overrightarrow{ OC } \cdot \overrightarrow{ OA }$ and then divide by $|\overrightarrow{ OA }|$. If the result is $-\frac{3}{2}$, then statement (A) is true.
Step 6: Verify Option (B)
The area of the triangle $OAB$ is given by: $$ \text{Area of } OAB = \frac{1}{2} |\overrightarrow{ OA } \times \overrightarrow{ OB }|. $$
Calculate the cross product $\overrightarrow{ OA } \times \overrightarrow{ OB }$ and its magnitude to confirm that the area is $\frac{9}{2}$.
Step 7: Verify Option (C)
The area of triangle $ABC$ is given by: $$ \text{Area of } ABC = \frac{1}{2} |\overrightarrow{ AB } \times \overrightarrow{ AC }|. $$
Using the vector $\overrightarrow{ AB } = \overrightarrow{ OB } - \overrightarrow{ OA }$ and $\overrightarrow{ AC } = \overrightarrow{ OC } - \overrightarrow{ OA }$, compute the cross product and verify that the area is $\frac{9}{2}$.
Step 8: Conclusion
After performing the calculations and verifications, the correct options are:
- (A) Projection of $\overrightarrow{ OC }$ on $\overrightarrow{ OA }$ is $-\frac{3}{2}$ (TRUE)
- (B) Area of the triangle $OAB$ is $\frac{9}{2}$ (TRUE)
- (C) Area of the triangle $ABC$ is $\frac{9}{2}$ (TRUE)
Thus, all the statements are true.
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hookeβs law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 