Let \( \bar{n} \) be a unit vector normal to the plane \( \pi \) containing the vectors \( \bar{T} + 3\bar{k} \) and \( 2\bar{i} + \bar{j} - \bar{k} \). If this plane \( \pi \) passes through the point \( (-3,7,1) \) and \( p \) is the perpendicular distance from the origin to this plane, then \( \sqrt{p^2 + 5} \) is:
\( 51 \)
Step 1: Finding the Normal Vector to the Plane
The given vectors lying in the plane are:
\[
\bar{a} = \bar{i} + 3\bar{k}, \quad \bar{b} = 2\bar{i} + \bar{j} - \bar{k}.
\]
The normal vector to the plane is given by the cross product:
\[
\bar{n} = \bar{a} \times \bar{b}.
\]
Computing the determinant:
\[
\bar{n} =
\begin{vmatrix}
\bar{i} & \bar{j} & \bar{k} \\
1 & 0 & 3 \\
2 & 1 & -1
\end{vmatrix}
\]
Expanding along the first row:
\[
\bar{n} = \bar{i}
\begin{vmatrix} 0 & 3 \\ 1 & -1 \end{vmatrix}
- \bar{j}
\begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix}
+ \bar{k}
\begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix}.
\]
Evaluating the determinants:
\[
\begin{vmatrix} 0 & 3 \\ 1 & -1 \end{vmatrix} = (0 \times -1) - (3 \times 1) = -3,
\]
\[
\begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix} = (1 \times -1) - (3 \times 2) = -1 - 6 = -7,
\]
\[
\begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = (1 \times 1) - (0 \times 2) = 1.
\]
Thus, the normal vector is:
\[
\bar{n} = (-3)\bar{i} + (7)\bar{j} + (1)\bar{k}.
\]
Step 2: Equation of the Plane
The plane equation is given by:
\[
-3(x + 3) + 7(y - 7) + 1(z - 1) = 0.
\]
Simplifying,
\[
-3x - 9 + 7y - 49 + z - 1 = 0.
\]
\[
-3x + 7y + z - 59 = 0.
\]
Step 3: Finding Perpendicular Distance from Origin
The perpendicular distance from the origin \( (0,0,0) \) to the plane is given by:
\[
p = \frac{| -3(0) + 7(0) + 1(0) - 59 |}{\sqrt{(-3)^2 + 7^2 + 1^2}}.
\]
\[
p = \frac{| -59 |}{\sqrt{9 + 49 + 1}} = \frac{59}{\sqrt{59}} = \sqrt{59}.
\]
Step 4: Finding \( \sqrt{p^2 + 5} \)
\[
\sqrt{p^2 + 5} = \sqrt{59 + 5} = \sqrt{64} = 8.
\]
Thus, the final answer is:
\[
\boxed{8}.
\]