Given: The piecewise function is defined as:
\(f(x) = \begin{cases} n(1 - 2nx), & \text{if } 0 \leq x < \frac{1}{2n} \\ 2n(2n - 1), & \text{if } \frac{1}{2n} \leq x < \frac{3}{4n} \\ 4n(1 - nx), & \text{if } \frac{3}{4n} \leq x < \frac{1}{n} \\ \frac{n}{n - 1}(nx - 1), & \text{if } \frac{1}{n} \leq x \leq 1 \end{cases}\)
The function \( f(x) \) is defined over the interval \( x \in [0, 1] \).
We need to determine the intervals where \( f(x) \) is increasing or decreasing.
We can calculate the derivative of \( f(x) \) for each piece and find the intervals where the derivative is positive (increasing) or negative (decreasing).
By examining the given intervals and the derivatives, we can summarize the behavior of \( f(x) \):
The correct answer is 8.
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C