Step 1: Use substitution method.
Let \( u = x^2 + 1 \Rightarrow \frac{du}{dx} = 2x \Rightarrow du = 2x \, dx \Rightarrow x \, dx = \frac{1}{2} du \)
Step 2: Substitute in the integral.
\[ \int \frac{x}{x^2 + 1} dx = \int \frac{1}{u} \cdot \frac{1}{2} du = \frac{1}{2} \int \frac{1}{u} du \]
Step 3: Integrate.
\[ \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln(x^2 + 1) + C \]
Step 4: Final Answer. \( \boxed{ \frac{1}{2} \ln(x^2 + 1) + C } \)
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is:
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.