To evaluate the integral \( \int x e^{x^2} \, dx \), we will use the method of substitution. Let's set \( u = x^2 \). Then, the derivative of \( u \) with respect to \( x \) is \( \frac{du}{dx} = 2x \), which implies that \( du = 2x \, dx \) or \( \frac{1}{2} du = x \, dx \).
Substituting these into the integral, we have:
\[ \int x e^{x^2} \, dx = \int e^u \cdot \frac{1}{2} \, du \]
This simplifies to:
\[ \frac{1}{2} \int e^u \, du \]
The integral of \( e^u \) with respect to \( u \) is simply \( e^u + C \). Thus, the expression becomes:
\[ \frac{1}{2} (e^u + C) = \frac{1}{2} e^u + C \]
Since \( u = x^2 \), we substitute back to get:
\[ \frac{1}{2} e^{x^2} + C \]
This leads us to the correct solution: \( \frac{1}{2} e^{x^2} + C \)
Step 1: Use substitution method
Let \( u = x^2 \Rightarrow du = 2x dx \Rightarrow x dx = \frac{1}{2} du \)
Step 2: Substitute and integrate
\[ \int x e^{x^2} dx = \int e^u \cdot \frac{1}{2} du = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + C \] \[ \Rightarrow \frac{1}{2} e^{x^2} + C \]
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]