Question:

Evaluate the integral \( \int x e^{x^2} dx \):

Show Hint

Key Fact: Look for substitution opportunities when the integrand includes a function and its derivative.
Updated On: May 28, 2025
  • \( \frac{1}{2} e^{x^2} + C \)
  • \( e^{x^2} + C \)
  • \( \frac{1}{2} x e^{x^2} + C \)
  • \( x^2 e^{x^2} + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use substitution method
Let \( u = x^2 \Rightarrow du = 2x dx \Rightarrow x dx = \frac{1}{2} du \)

Step 2: Substitute and integrate 
\[ \int x e^{x^2} dx = \int e^u \cdot \frac{1}{2} du = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + C \] \[ \Rightarrow \frac{1}{2} e^{x^2} + C \]

Was this answer helpful?
1
0