Step 1: Parameterize the curve.
The curve \( C \) is the intersection of the plane \( x + y + z = 1 \) and the cylinder \( x^2 + y^2 = 1 \). We can parameterize the curve using cylindrical coordinates:
\[
x = \cos t, \quad y = \sin t, \quad z = 1 - \cos t - \sin t, \quad t \in [0, 2\pi].
\]
Step 2: Compute the vector field along the curve.
The vector field \( \mathbf{F}(x, y, z) = 2y \hat{i} + x^2 \hat{j} + xy \hat{k} \) along the curve is:
\[
\mathbf{F}(x(t), y(t), z(t)) = 2\sin t \hat{i} + \cos^2 t \hat{j} + \cos t \sin t \hat{k}.
\]
Step 3: Compute the line integral.
The line integral is:
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left( 2\sin t \, \frac{d}{dt}(\cos t) + \cos^2 t \, \frac{d}{dt}(\sin t) + \cos t \sin t \, \frac{d}{dt}(1 - \cos t - \sin t) \right) dt.
\]
After performing the integration, we find that the value of the integral is \( 2\pi \).
Step 4: Conclusion.
Thus, the correct answer is \( \boxed{(C)} \).