In spherical coordinates, for a vector field \( \mathbf{f}(R) = \mathbf{a}_R F(R) \), the divergence is: \[ \nabla \cdot \mathbf{f} = \frac{1}{R^2} \frac{d}{dR} \left( R^2 F(R) \right) \] Given \( F(R) = \frac{1}{R^n} \), we get: \[ \nabla \cdot \mathbf{f} = \frac{1}{R^2} \frac{d}{dR} \left( R^2 \cdot \frac{1}{R^n} \right) = \frac{1}{R^2} \cdot \frac{d}{dR} \left( R^{2-n} \right) = \frac{1}{R^2} \cdot (2 - n) R^{1 - n} = (2 - n) R^{-1 - n} \] For the divergence to be independent of \( R \), the exponent of \( R \) must be zero: \[ -1 - n = 0 \Rightarrow n = -1 \] Now test if there are other such values. Let’s try the expression: \[ \nabla \cdot \mathbf{f} = (2 - n) R^{-1 - n} \] This will be independent of \( R \) if the exponent is zero: \[ -1 - n = 0 \Rightarrow n = -1 \] So, only \( n = -1 \) strictly satisfies divergence being constant. However, if we want zero divergence, then: \[ \nabla \cdot \mathbf{f} = 0 \Rightarrow (2 - n) R^{-1 - n} = 0 \Rightarrow 2 - n = 0 \Rightarrow n = 2 \] So, for: - \( n = -1 \): divergence is constant (independent of \( R \)) - \( n = 2 \): divergence is zero, which is also independent of \( R \)
Hence, both \( n = -1 \) and \( n = 2 \) are correct. \[ \boxed{{Correct options: (B), (D)}} \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.
In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?