Question:

Let \( \mathbf{a} = \mathbf{i} - 2\mathbf{j} \), \( \mathbf{b} = 2\mathbf{j} + 3\mathbf{k} \), \( \mathbf{c} = p\mathbf{i} + q\mathbf{j} \) and \( \mathbf{d} = p\mathbf{j} - q\mathbf{k} \) be four vectors. If \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 3 \) and \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{d} = 0 \), then \( 3p + q = \)

Show Hint

For collinear vectors \( \mathbf{a} \) and \( \mathbf{b} \), use the property \( \mathbf{a} = \lambda \mathbf{b} \). For scalar triple product, remember \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3
b_1 & b_2 & b_3
c_1 & c_2 & c_3 \end{vmatrix} \). Use the given conditions to form equations involving \( p \) and \( q \) and solve for them. Finally, find the value of \( 3p + q \).
Updated On: May 12, 2025
  • \( 0 \)
  • \( 3 \)
  • \( -2 \)
  • \( 6 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

First, calculate the cross product \( \mathbf{a} \times \mathbf{b} \): $$ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k}
1 & -2 & 0
0 & 2 & 3 \end{vmatrix} = \mathbf{i}(-6 - 0) - \mathbf{j}(3 - 0) + \mathbf{k}(2 - 0) = -6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} $$ Given \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 3 \): $$ (-6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) \cdot (p\mathbf{i} + q\mathbf{j} + 0\mathbf{k}) = 3 $$ $$ -6p - 3q = 3 $$ Dividing by \( -3 \): $$ 2p + q = -1 \quad \cdots (1) $$ Given \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{d} = 0 \): $$ (-6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) \cdot (0\mathbf{i} + p\mathbf{j} - q\mathbf{k}) = 0 $$ $$ -3p - 2q = 0 \quad \cdots (2) $$ Multiply equation (1) by 2: \( 4p + 2q = -2 \quad \cdots (3) \) Add equation (2) and (3): $$ (-3p - 2q) + (4p + 2q) = 0 + (-2) $$ $$ p = -2 $$ Substitute \( p = -2 \) into equation (1): $$ 2(-2) + q = -1 $$ $$ -4 + q = -1 $$ $$ q = 3 $$ Now, calculate \( 3p + q \): $$ 3p + q = 3(-2) + 3 = -6 + 3 = -3 $$ There seems to be a discrepancy with the correct answer provided.
Let's recheck the calculations.
\( \mathbf{a} \times \mathbf{b} = -6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} \) \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = -6p - 3q = 3 \implies 2p + q = -1 \) \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{d} = -3p - 2q = 0 \) From \( 2p + q = -1 \), \( q = -1 - 2p \).
Substitute into \( -3p - 2q = 0 \): \( -3p - 2(-1 - 2p) = 0 \implies -3p + 2 + 4p = 0 \implies p = -2 \).
\( q = -1 - 2(-2) = -1 + 4 = 3 \).
\( 3p + q = 3(-2) + 3 = -6 + 3 = -3 \).
Let's check if there was a typo in the question or options.
If the correct answer is 0, let's see if that's possible.
If \( 3p + q = 0 \implies q = -3p \).
\( 2p + q = -1 \implies 2p - 3p = -1 \implies -p = -1 \implies p = 1 \).
\( q = -3(1) = -3 \).
Check \( -3p - 2q = -3(1) - 2(-3) = -3 + 6 = 3 \neq 0 \).
There appears to be an inconsistency.
Assuming the provided correct answer is indeed (A) 0, there might be an error in my derivation or the question statement.
Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions