We are given that: \[ \mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} \quad \text{and} \quad \mathbf{a} \times \mathbf{b} \neq 0 \] We subtract the two vector equations: \[ \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c} = 0 \] Using the distributive property of the cross product: \[ \mathbf{a} \times (\mathbf{b} - \mathbf{c}) = 0 \] For the cross product to be zero, the vectors \( \mathbf{a} \) and \( \mathbf{b} - \mathbf{c} \) must be parallel. This implies that: \[ \mathbf{b} - \mathbf{c} = \lambda \mathbf{a} \quad \text{for some scalar} \ \lambda \] Thus, we have: \[ \mathbf{b} = \mathbf{c} + \lambda \mathbf{a} \] Now, since \( \mathbf{a} \times \mathbf{b} \neq 0 \), we know that \( \mathbf{a} \) is not perpendicular to \( \mathbf{b} \), so \( \mathbf{b} \neq \mathbf{c} \). Therefore, we have shown that: \[ \mathbf{b} = \mathbf{c} \]