Let \( \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \), and
\( \mathbf{b} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ 0 \end{bmatrix} \).
Then, the system of linear equations \( \mathbf{A} \mathbf{x} = \mathbf{b} \) has
Show Hint
If the rank of the coefficient matrix equals the rank of the augmented matrix and is {less than} the number of variables, the system has {infinitely many solutions}.
We are given a system of linear equations of the form \( \mathbf{A} \mathbf{x} = \mathbf{b} \), where:
\[
\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ 0 \end{bmatrix}
\]
First, observe that Row 2 is the negative of Row 1, which means the rank of \( \mathbf{A} \) is at most 2.