We are given a system of linear equations of the form \( \mathbf{A} \mathbf{x} = \mathbf{b} \), where:
\[
\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ 0 \end{bmatrix}
\]
First, observe that Row 2 is the negative of Row 1, which means the rank of \( \mathbf{A} \) is at most 2.
Let's write the augmented matrix and row reduce:
\[
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & \frac{1}{3} \\
-1 & -1 & -1 & -\frac{1}{3} \\
0 & 1 & -1 & 0
\end{array} \right]
\]
Add Row 1 to Row 2:
\[
\left[ \begin{array}{ccc|c}
1 & 1 & 1 & \frac{1}{3} \\
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0
\end{array} \right]
\]
Now subtract \( 1 \times \) Row 2 from Row 1:
\[
\left[ \begin{array}{ccc|c}
1 & 0 & 2 & \frac{1}{3} \\
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0
\end{array} \right]
\]
This system has two non-zero rows, and three variables, so the rank of \( \mathbf{A} \) = rank of augmented matrix = 2 < number of variables = 3.
\[
\Rightarrow \text{Infinitely many solutions}
\]