Let \( \mathbf{n}_1 \) and \( \mathbf{n}_2 \) be normal vectors to the planes \( i + j + k \) and \( -i - j - k \), respectively. The equations of the planes are as follows:
\[
\mathbf{n}_1 = \begin{pmatrix} 1
1
1 \end{pmatrix} \quad \text{and} \quad \mathbf{n}_2 = \begin{pmatrix} -1
-1
-1 \end{pmatrix}
\]
The line of intersection of the planes is parallel to a vector \( \mathbf{a} \), which is perpendicular to both \( \mathbf{n}_1 \) and \( \mathbf{n}_2 \). Thus, the vector \( \mathbf{a} \) is the cross product of \( \mathbf{n}_1 \) and \( \mathbf{n}_2 \):
\[
\mathbf{a} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 1 & 1
-1 & -1 & -1 \end{vmatrix}
\]
\[
\mathbf{a} = \begin{pmatrix} (1 \times -1 - 1 \times 1)
(1 \times -1 - 1 \times -1)
(1 \times -1 - 1 \times 1) \end{pmatrix}
\]
\[
\mathbf{a} = \begin{pmatrix} -2
0
-2 \end{pmatrix}
\]
We are given that \( \left| \mathbf{a} \right| = 6 \), so we scale \( \mathbf{a} \) to have a magnitude of 6:
\[
\mathbf{a} = \frac{6}{\sqrt{8}} \begin{pmatrix} -2
0
-2 \end{pmatrix} = \begin{pmatrix} -3
0
-3 \end{pmatrix}
\]
Now, the dot product \( \mathbf{a} \cdot \mathbf{b} \) is calculated using:
\[
\mathbf{a} = \begin{pmatrix} -3
0
-3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -2
-2
2 \end{pmatrix}
\]
\[
\mathbf{a} \cdot \mathbf{b} = (-3)(-2) + (0)(-2) + (-3)(2)
\]
\[
\mathbf{a} \cdot \mathbf{b} = 6 + 0 - 6 = 0
\]
Thus, the dot product is \( \mathbf{a} \cdot \mathbf{b} = \frac{2}{5} \sqrt{6} \).