To find the expression \( \left(\frac{n}{m}\right)^{\frac{1}{3}} \), we first determine the coefficients of the seventh and thirteenth terms in the expansion of \( \left( \frac{1}{3}x^{\frac{1}{3}} + \frac{1}{2x^{\frac{2}{3}}} \right)^{18} \). This involves finding the general form of the binomial expansion and using the binomial theorem.
For the binomial expansion, the general term is given by:
\(T_{k+1} = \binom{n}{k} \left(a\right)^{n-k} \left(b\right)^k\)
where \(n = 18, a = \frac{1}{3}x^{\frac{1}{3}}, b = \frac{1}{2x^{\frac{2}{3}}}\)and \(k = k\).
The term becomes:
\(T_{k+1} = \binom{18}{k} \left(\frac{1}{3}\right)^{18-k} x^{\frac{18-k}{3}} \left(\frac{1}{2}\right)^k x^{-\frac{2k}{3}}\)
Combine the powers of \( x \):
\(= \binom{18}{k} \left(\frac{1}{3}\right)^{18-k} \left(\frac{1}{2}\right)^k x^{\frac{18-k-2k}{3}}\)
Thus, the power of \( x \) is:
\(\frac{18-3k}{3} = 6 - k\)
We now compute the expression:
\(\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{12} \left(\frac{1}{3}\right)^6 \left(\frac{1}{2}\right)^{12}}{\binom{18}{6} \left(\frac{1}{3}\right)^{12} \left(\frac{1}{2}\right)^6}\right)^{\frac{1}{3}}\)
This simplifies to:
\(= \left(\frac{\binom{18}{12}}{\binom{18}{6}} \cdot \left(\frac{1}{3}\right)^{-6} \cdot \left(\frac{1}{2}\right)^6\right)^{\frac{1}{3}}\)
Using the symmetry property of binomial coefficients (\( \binom{n}{k} = \binom{n}{n-k} \)), we find:
\(\binom{18}{12} = \binom{18}{6}\)
So it further simplifies:
\(= \left(\left(\frac{9}{4}\right)\right)^{\frac{1}{3}} = \frac{9}{4}\)
Therefore, the answer is:
\(\frac{9}{4}\).
In the binomial expansion of $(a+b)^{18}$, the general term is given by $T_{r+1} = \binom{n}{r} a^{n-r} b^r$.
Using the formula for the general term in the binomial expansion, we can find the seventh and thirteenth terms of the given expansion.
Seventh term:
$T_7 = \binom{18}{6} \left(\frac{1}{3x^{\frac{1}{3}}}\right)^{12} \left(\frac{1}{2x^{\frac{1}{3}}}\right)^6$
$m = \binom{18}{6} \left(\frac{1}{3}\right)^{12} \left(\frac{1}{2}\right)^6$
Thirteenth term:
$T_{13} = \binom{18}{12} \left(\frac{1}{3x^{\frac{1}{3}}}\right)^6 \left(\frac{1}{2x^{\frac{1}{3}}}\right)^{12}$
$n = \binom{18}{12} \left(\frac{1}{3}\right)^6 \left(\frac{1}{2}\right)^{12}$
Now, we need to find $\left(\frac{n}{m}\right)^{\frac{1}{3}}$.
$\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{12} \left(\frac{1}{3}\right)^6 \left(\frac{1}{2}\right)^{12}}{\binom{18}{6} \left(\frac{1}{3}\right)^{12} \left(\frac{1}{2}\right)^6}\right)^{\frac{1}{3}}$
Simplifying the expression, we get:
$\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{12}}{\binom{18}{6}} \times \left(\frac{1}{3}\right)^{-6} \times \left(\frac{1}{2}\right)^6\right)^{\frac{1}{3}}$
Using the property of binomial coefficients $\binom{n}{r} = \binom{n}{n-r}$, we can simplify further:
$\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{6}}{\binom{18}{6}} \times \left(\frac{1}{3}\right)^{-6} \times \left(\frac{1}{2}\right)^6\right)^{\frac{1}{3}} = \left(\frac{1}{3^{-6}} \times \frac{1}{2^6}\right)^{\frac{1}{3}} = \left(3^6 \times 2^{-6}\right)^{\frac{1}{3}} = \left(\frac{3^2}{2^2}\right) = \frac{9}{4}$
Therefore, the correct answer is (4).
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 