In the binomial expansion of $(a+b)^{18}$, the general term is given by $T_{r+1} = \binom{n}{r} a^{n-r} b^r$.
Using the formula for the general term in the binomial expansion, we can find the seventh and thirteenth terms of the given expansion.
Seventh term:
$T_7 = \binom{18}{6} \left(\frac{1}{3x^{\frac{1}{3}}}\right)^{12} \left(\frac{1}{2x^{\frac{1}{3}}}\right)^6$
$m = \binom{18}{6} \left(\frac{1}{3}\right)^{12} \left(\frac{1}{2}\right)^6$
Thirteenth term:
$T_{13} = \binom{18}{12} \left(\frac{1}{3x^{\frac{1}{3}}}\right)^6 \left(\frac{1}{2x^{\frac{1}{3}}}\right)^{12}$
$n = \binom{18}{12} \left(\frac{1}{3}\right)^6 \left(\frac{1}{2}\right)^{12}$
Now, we need to find $\left(\frac{n}{m}\right)^{\frac{1}{3}}$.
$\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{12} \left(\frac{1}{3}\right)^6 \left(\frac{1}{2}\right)^{12}}{\binom{18}{6} \left(\frac{1}{3}\right)^{12} \left(\frac{1}{2}\right)^6}\right)^{\frac{1}{3}}$
Simplifying the expression, we get:
$\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{12}}{\binom{18}{6}} \times \left(\frac{1}{3}\right)^{-6} \times \left(\frac{1}{2}\right)^6\right)^{\frac{1}{3}}$
Using the property of binomial coefficients $\binom{n}{r} = \binom{n}{n-r}$, we can simplify further:
$\left(\frac{n}{m}\right)^{\frac{1}{3}} = \left(\frac{\binom{18}{6}}{\binom{18}{6}} \times \left(\frac{1}{3}\right)^{-6} \times \left(\frac{1}{2}\right)^6\right)^{\frac{1}{3}} = \left(\frac{1}{3^{-6}} \times \frac{1}{2^6}\right)^{\frac{1}{3}} = \left(3^6 \times 2^{-6}\right)^{\frac{1}{3}} = \left(\frac{3^2}{2^2}\right) = \frac{9}{4}$
Therefore, the correct answer is (4).
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: